48 research outputs found
Spatial and temporal evaluations of the liquid argon purity in ProtoDUNE-SP
Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by the cathode plane assembly, which is biased to create an almost uniform electric field in both volumes. The DUNE Far Detector modules must have robust cryogenic systems capable of filtering argon and supplying the TPC with clean liquid. This paper will explore comparisons of the argon purity measured by the purity monitors with those measured using muons in the TPC from October 2018 to November 2018. A new method is introduced to measure the liquid argon purity in the TPC using muons crossing both drift volumes of ProtoDUNE-SP. For extended periods on the timescale of weeks, the drift electron lifetime was measured to be above 30 ms using both systems. A particular focus will be placed on the measured purity of argon as a function of position in the detector
DUNE Phase II: scientific opportunities, detector concepts, technological solutions
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Measurement of Muon antineutrino quasielastic scattering on a hydrocarbon target at Eν∼3.5 GeV
We have isolated ν̄μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ2, and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q2 favor this interpretation over an alternative in which the axial mass is increased. © 2013 American Physical Society
Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at Eν∼3.5 GeV
We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ2, and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state. © 2013 American Physical Society
Constraints on large extra dimensions from the MINOS experiment
We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab's Neutrinos at the Main Injector beam exposure of 10.56×1020 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μm at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for nonvanishing masses. © 2016 American Physical Society
Design, calibration, and performance of the MINERvA detector
Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concyte
Combined analysis of νμ disappearance and νμ →νe appearance in MINOS using accelerator and atmospheric neutrinos
We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the νμ disappearance and νe appearance data using the three-flavor formalism. We measure |Δm322|=[2.28-2.46]×10-3eV2 (68% C.L.) and sin2θ23=0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm322|=[2.32-2.53]×10-3eV2 (68% C.L.) and sin2θ23=0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δCP, the θ23 octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L. © 2014 American Physical Society
Design, calibration, and performance of the MINERvA detector
AbstractThe MINERvA66Main INjector ExpeRiment ν-A. experiment is designed to perform precision studies of neutrino-nucleus scattering using νμ and ν¯μ neutrinos incident at 1–20GeV in the NuMI beam at Fermilab. This article presents a detailed description of the MINERvA detector and describes the ex situ and in situ techniques employed to characterize the detector and monitor its performance. The detector is composed of a finely segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized
