213 research outputs found

    Chemotaxis When Bacteria Remember: Drift versus Diffusion

    Get PDF
    {\sl Escherichia coli} ({\sl E. coli}) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles -- a fact not borne out by experiment -- and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.Comment: Revised version, journal reference adde

    Strain-controlled criticality governs the nonlinear mechanics of fibre networks

    Full text link
    Disordered fibrous networks are ubiquitous in nature as major structural components of living cells and tissues. The mechanical stability of networks generally depends on the degree of connectivity: only when the average number of connections between nodes exceeds the isostatic threshold are networks stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing the connectivity through this point, such networks undergo a mechanical phase transition from a floppy to a rigid phase. However, even sub-isostatic networks become rigid when subjected to sufficiently large deformations. To study this strain-controlled transition, we perform a combination of computational modeling of fibre networks and experiments on networks of type I collagen fibers, which are crucial for the integrity of biological tissues. We show theoretically that the development of rigidity is characterized by a strain-controlled continuous phase transition with signatures of criticality. Our experiments demonstrate mechanical properties consistent with our model, including the predicted critical exponents. We show that the nonlinear mechanics of collagen networks can be quantitatively captured by the predictions of scaling theory for the strain-controlled critical behavior over a wide range of network concentrations and strains up to failure of the material

    Sensitivity of the stress response function to packing preparation

    Full text link
    A granular assembly composed of a collection of identical grains may pack under different microscopic configurations with microscopic features that are sensitive to the preparation history. A given configuration may also change in response to external actions such as compression, shearing etc. We show using a mechanical response function method developed experimentally and numerically, that the macroscopic stress profiles are strongly dependent on these preparation procedures. These results were obtained for both two and three dimensions. The method reveals that, under a given preparation history, the macroscopic symmetries of the granular material is affected and in most cases significant departures from isotropy should be observed. This suggests a new path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J. Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR

    Breaking down barriers:promoting journals beyond the page with open access journal clubs

    Get PDF
    In 2020, during the early days of the COVID-19 pandemic, the British Journal of Psychiatry ( BJPsych) established a series of free online teaching sessions called BJPsych Journal Clubs. Their educational purpose is two-fold: (a) to provide junior psychiatrists with a friendly but large-scale platform to evaluate and critically appraise recent articles published in the BJPsych and (b) to present new research findings in an open and accessible manner. In this paper, we discuss our framework, the challenges we encountered, how the original model is evolving based on feedback from trainees, and tips for success when delivering international online journal clubs. </p

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Delayed solidification of soft glasses: New experiments, and a theoretical challenge

    Full text link
    When subjected to large amplitude oscillatory shear stress, aqueous Laponite suspensions show an abrupt solidification transition after a long delay time tc. We measure the dependence of tc on stress amplitude, frequency, and on the age-dependent initial loss modulus. At first sight our observations appear quantitatively consistent with a simple soft-glassy rheology (SGR)-type model, in which barrier crossings by mesoscopic elements are purely strain-induced. For a given strain amplitude {\gamma}0 each element can be classified as fluid or solid according to whether its local yield strain exceeds {\gamma}0. Each cycle, the barrier heights E of yielded elements are reassigned according to a fixed prior distribution {\rho}(E): this fixes the per-cycle probability R({\gamma}0) of a fluid elements becoming solid. As the fraction of solid elements builds up, {\gamma}0 falls (at constant stress amplitude), so R({\gamma}0) increases. This positive feedback accounts for the sudden solidification after a long delay. The model thus appears to directly link macroscopic rheology with mesoscopic barrier height statistics: within its precepts, our data point towards a power law for {\rho}(E) rather than the exponential form usually assumed in SGR. However, despite this apparent success, closer investigation shows that the assumptions of the model cannot be reconciled with the extremely large strain amplitudes arising in our experiments. The quantitative explanation of delayed solidification in Laponite therefore remains an open theoretical challenge.Comment: 16 pages, 6 figures, to appear in Faraday Discussion

    Efficacy of polyethylene glycol adhesion barrier after gynecological laparoscopic surgery: Results of a randomized controlled pilot study

    Get PDF
    Postoperative adhesions are the most frequent complication of peritoneal surgery, causing small bowel obstruction, female infertility and chronic pain. This pilot study assessed the efficacy of a sprayable polyethylene glycol (PEG) barrier in the prevention of de novo adhesions. 16 patients undergoing laparoscopic gynecological surgery were randomly assigned by shuffled sealed envelopes to receive either the adhesion barrier or no adhesion prevention. Incidence and severity of adhesions were scored at eight sites in the pelvis and reassessed by second look laparoscopy. Adhesion prevention was considered successful if no de novo adhesion were found at second look laparoscopy. One patient was excluded before randomization. Nine patients were randomized to treatment and six patients to control group. De novo adhesions were found in 0/9 patients who received the PEG barrier compared to 4/6 without adhesion prevention (0% vs. 67%, P = 0.01). Reduction in adhesion score was significantly greater in patients receiving PEG barrier (−2.6 vs. −0.06, P = 0.03). Meta-analysis of three randomized trials demonstrated that PEG barrier reduces the incidence of adhesions (odds ratio [OR] = 0.27; 95% CI 0.11–0.67). From this study, PEG barrier seems effective in reducing postoperative formation of de novo adhesions

    A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data

    Full text link
    We introduce a wide and deep neural network for prediction of progression from patients with mild cognitive impairment to Alzheimer's disease. Information from anatomical shape and tabular clinical data (demographics, biomarkers) are fused in a single neural network. The network is invariant to shape transformations and avoids the need to identify point correspondences between shapes. To account for right censored time-to-event data, i.e., when it is only known that a patient did not develop Alzheimer's disease up to a particular time point, we employ a loss commonly used in survival analysis. Our network is trained end-to-end to combine information from a patient's hippocampus shape and clinical biomarkers. Our experiments on data from the Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model is able to learn a shape descriptor that augments clinical biomarkers and outperforms a deep neural network on shape alone and a linear model on common clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop, ECML-PKDD 201
    corecore