124 research outputs found

    Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations

    Full text link
    We report an ab initio study of the semiconducting Mg2X (with X = Si, Ge) compounds and in particular we analyze the formation energy of the different point defects with the aim to understand the intrinsic doping mechanisms. We find that the formation energy of Mg2Ge is 50 % larger than the one of Mg2Si, in agreement with the experimental tendency. From the study of the stability and the electronic properties of the most stable defects taking into account the growth conditions, we show that the main reason for the n-doping in these materials comes from interstitial magnesium defects. Conversely, since other defects acting like acceptors such as Mg vacancies or multivacancies are more stable in Mg2Ge than in Mg2Si, this explains why Mg2Ge can be of n or p type, contrary to Mg2Si. The finding that the most stable defects are different in Mg2Si and Mg2Ge and depend on the growth conditions is important and must be taken into account in the search of the optimal doping to improve the thermoelectric properties of these materials.Comment: 25 pages, 6 Table

    The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe

    Get PDF
    International audienceDrosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here we report fourteen DNA viruses detected in a metagenomic analysis of approximately 6500 pool-sequenced Drosophila, sampled from 47 European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a dsRNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to 12 segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2% or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly-available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D. melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses

    Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows

    Get PDF
    The aim of this study was to identify genomic regions associated with 305-day milk yield and lactation curve parameters on primiparous (n = 9,910) and multiparous (n = 11,158) Holstein cows. The SNP solutions were estimated using a weighted single-step genomic BLUP approach and imputed high-density panel (777k) genotypes. The proportion of genetic variance explained by windows of 50 consecutive SNP (with an average of 165 Kb) was calculated, and regions that accounted for more than 0.50% of the variance were used to search for candidate genes. Estimated heritabilities were 0.37, 0.34, 0.17, 0.12, 0.30 and 0.19, respectively, for 305-day milk yield, peak yield, peak time, ramp, scale and decay for primiparous cows. Genetic correlations of 305-day milk yield with peak yield, peak time, ramp, scale and decay in primiparous cows were 0.99, 0.63, 0.20, 0.97 and -0.52, respectively. The results identified three windows on BTA14 associated with 305-day milk yield and the parameters of lactation curve in primi- and multiparous cows. Previously proposed candidate genes for milk yield supported by this work include GRINA, CYHR1, FOXH1, TONSL, PPP1R16A, ARHGAP39, MAF1, OPLAH and MROH1, whereas newly identified candidate genes are MIR2308, ZNF7, ZNF34, SLURP1, MAFA and KIFC2 (BTA14). The protein lipidation biological process term, which plays a key role in controlling protein localization and function, was identified as the most important term enriched by the identified genes

    Expert-based development of a generic HACCP-based risk management system to prevent critical negative energy balance in dairy herds

    No full text
    The objective of this study was to develop a generic risk management system based on the Hazard Analysis and Critical Control Point (HACCP) principles for the prevention of critical negative energy balance (NEB) in dairy herds using an expert panel approach. In addition, we discuss the advantages and limitations of the system in terms of implementation in the individual dairy herd. For the expert panel, we invited 30 researchers and advisors with expertise in the field of dairy cow feeding and/or health management from eight European regions. They were invited to a Delphi-based set-up that included three inter-correlated questionnaires in which they were asked to suggest risk factors for critical NEB and to score these based on 'effect' and 'probability'. Finally, the experts were asked to suggest critical control points (CCPs) specified by alarm values, monitoring frequency and corrective actions related to the most relevant risk factors in an operational farm setting. A total of 12 experts (40 %) completed all three questionnaires. Of these 12 experts, seven were researchers and five were advisors and in total they represented seven out of the eight European regions addressed in the questionnaire study. When asking for suggestions on risk factors and CCPs, these were formulated as 'open questions', and the experts' suggestions were numerous and overlapping. The suggestions were merged via a process of linguistic editing in order to eliminate doublets. The editing process revealed that the experts provided a total of 34 CCPs for the 11 risk factors they scored as most important. The consensus among experts was relatively high when scoring the most important risk factors, while there were more diverse suggestions of CCPs with specification of alarm values and corrective actions. We therefore concluded that the expert panel approach only partly succeeded in developing a generic HACCP for critical NEB in dairy cows. We recommend that the output of this paper is used to inform key areas for implementation on the individual dairy farm by local farm teams including farmers and their advisors, who together can conduct herd-specific risk factor profiling, organise the ongoing monitoring of herd-specific CCPs, as well as implement corrective actions when CCP alarm values are exceeded

    Genetic evaluation for birth and conformation traits in dual-purpose Belgian Blue cattle using a mixed inheritance model

    Full text link
    The segregation of the causal mutation (mh) in the muscular hypertrophy gene in dual-purpose Belgian Blue (dpBB) cattle is considered to result in greater calving difficulty (dystocia). Establishing adapted genetic evaluations might overcome this situation through efficient selection. However, the heterogeneity of dpBB populations at the mh locus implies separating the major gene and other polygenic effects in complex modeling. The use of mixed inheritance models may be an interesting option because they simultaneously assume both influences. A genetic evaluation in dpBB based on a mixed inheritance model was developed for birth and conformation traits: gestation length (GL), calving difficulty (CD), birth weight (BiW), and body conformation score (BC). A total of 27,362 animals having records were used for analyses. The total number of animals in the pedigree used to build the numerator relationship matrix was 62,617. Genotypes at the mh locus were available for 2,671 animals. Missing records at this locus were replaced with genotype probabilities. A total of 13,221 (48.3%) were registered as dpBB, 1,287 (4.7%) as beef Belgian Blue, and 12,854 (47.0%) were unknown. From those 13,221dpBB animals, 650, 849, and 534 had double or single copies or no copy, respectively, of the causal mutation (mh) in the muscular hypertrophy gene, whereas 11,188 had missing genotypes. This heterogeneity at the mh locus may be the reason for high variability in the studied traits, that is, high heritability estimates of 0.33, 0.30, 0.38, and 0.43 for GL, CD, BiW, and BC, respectively. In general, additive (P < 0.05) and dominance (P < 0.001) allele substitution for calves and dams had significant impact for all traits. The moderate coefficient of genetic variation (27.80%) and high direct heritability (0.28) for CD suggested genetic variability in dpBB and possible genetic improvement through selection. This variability has allowed dpBB breeders to successfully apply mass selection in the past. Genetic trend means from 1988 to 2016 showed that sire selection for CD within genotype was progressively applied by breeders. The selection intensity was more important for CD in double-muscled lines than in segregated lines. Our study illustrated the possible confusion caused by the use of major genes in selection and the importance of fitting appropriate models such as mixed inheritance models that combine polygenic and gene content information.Genodomic
    corecore