34 research outputs found

    Participation of the Cell Polarity Protein PALS1 to T-Cell Receptor-Mediated NF-κB Activation

    Get PDF
    BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR)-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation

    Global tracking of marine megafauna space use reveals how to achieve conservation targets

    Get PDF
    The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity.</p

    Global tracking of marine megafauna space use reveals how to achieve conservation targets

    Get PDF
    The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity

    Interplay between BCL10, MALT1 and IκBα during T-cell-receptor-mediated NFκB activation

    Full text link
    T-cell-receptor (TCR) signalling to NFκB requires the assembly of a large multiprotein complex containing the serine/threonine kinase CK1α, the scaffold protein CARMA1, the heterodimer BCL10-MALT1 (the CBM complex) and the IκB kinase complex (IKK). Although the mechanisms regulating recruitment and activation of IKK within the CBM microenvironment have been extensively studied, there is little understanding of how IKK subsequently binds and phosphorylates IκBα, the inhibitor of NFκB, to promote IκBα ubiquitylation and proteasomal degradation. Here, we show that BCL10, MALT1 and IKK inducibly associate with IκBα in a complex that is physically distinct from the early CK1α-CBM signalosome. This IκBα-containing complex probably maturates from the CBM, because siRNA-based knockdown of CARMA1, CK1α and BCL10 hampered its assembly, leading to a reduction in NFκB activation. By contrast, CK1α normally recruited both BCL10 and ubiquitylated species of MALT1 when IκBα levels were reduced. However, knockdown of IκBα led to an altered ubiquitylation profile of BCL10-MALT1 combined with a defect in MALT1 reorganisation within large cytoplasmic structures, suggesting that, following stimulation, IκBα might also participate in MALT1 recycling. Altogether, our data suggest a two-step mechanism to connect active IKK to IκBα, and further unveil a potential role for IκBα in resetting TCR-mediated signalling.</jats:p

    Subtotal hepatectomy in swine for studying small-for-size syndrome and portal inflow modulation: is it reliable?

    Get PDF
    AbstractBackgroundSmall-for-size syndrome (SFSS) is a feared complication of extended liver resection and partial liver transplantation. Swine models of extended hepatectomy have been developed for studying SFSS and its different treatment options. Although portal inflow modulation (PIM) by splenectomy or splenic artery ligation (SAL) has been proposed in humans to prevent SFSS, such procedures have not yet been evaluated in swine.ObjectivesThe present study was designed to evaluate modifications in splanchnic haemodynamics yielded by extended hepatectomy with and without PIM in swine.MethodsNineteen animals underwent 70% hepatectomy (H70, n = 7), 90% hepatectomy (H90, n = 7) or sham laparotomy (H0, n = 5). Haemodynamic measurements were performed at baseline, after hepatectomy and after PIM by SAL and splenectomy.ResultsPortal vein flow increased after both H70 (273 ml/min/100 g versus 123 ml/min/100 g; P = 0.016) and H90 (543 ml/min/100 g versus 124 ml/min/100 g; P = 0.031), but the hepatic venous pressure gradient (HVPG) increased only after H90 (10.0 mmHg versus 3.7 mmHg; P = 0.016). Hepatic artery flow did not significantly decrease after either H70 or H90. In all three groups, neither splenectomy nor SAL induced any changes in splanchnic haemodynamics.ConclusionsSubtotal hepatectomy of 90% in swine is a reliable model for SFSS inducing a significant increase in HVPG. However, in view of the relevant differences between swine and human splanchnic anatomy, this model is inadequate for studying the effects of PIM by SAL and splenectomy

    Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation

    No full text
    International audienceDynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks. In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks-including Rapid Visual Processing (RVP, assessing sustained visual attention)-and dFC speed quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module

    Modular slowing of resting-state dynamic Functional Connectivity as a marker of cognitive dysfunction induced by sleep deprivation

    Full text link
    AbstractDynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks.In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks –including Rapid Visual Processing (RVP, assessing sustained visual attention)– and dFC speed quantified at the level of functional subnetworks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.HighlightsSleep Deprivation (SD) slows down the random walk in FC space implemented by Dynamic Functional Connectivity (dFC) at rest.Whole-brain level slowing of dFC speed does not selectively correlate with fine and taskspecific changes in performanceWe quantify dFC speed separately for different link-based modules coordinated by distinct regional “meta-hubs”Modular dFC speed variations capture subtle and task-specific variations of cognitive performance induced by SD.Author summaryWe interpreted dynamic Functional Connectivity (dFC) as a random walk in the space of possible FC networks performed with a quantifiable “speed”.Here, we analyze a fMRI dataset in which subjects are scanned and cognitively tested both before and after Sleep Deprivation (SD), used as a reversible model of cognitive dysfunction. While global dFC speed slows down after a sleepless night, it is not a sufficiently sensitive metric to correlate with fine and specific cognitive performance changes. To boost the capacity of dFC speed analyses to account for fine and specific cognitive decline, we introduce the notion ofmodular dFC speed. Capitalizing on an edge-centric measure of functional connectivity, which we call Meta-Connectivity, we isolate subgraphs of FC describing relatively independent random walks (dFC modules) and controlled by distinct “puppet masters” (meta-hubs). We then find that variations of the random walk speed of distinct dFC modules now selectively correlate with SD-induced variations of performance in the different tasks. This is in agreement with the fact that different subsystems – distributed but functionally distinct– oversee different tasks.The high sensitivity of modular dFC analyses bear promise of future applications to the early detection and longitudinal characterization of pathologies such as Alzheimer’s disease.</jats:sec
    corecore