156 research outputs found

    Personhood credentials: artificial intelligence and the value of privacy-preserving tools to distinguish who is real online

    Get PDF
    Anonymity is an important principle online. However, malicious actors have long used misleading identities to conduct fraud, spread disinformation, and carry out other deceptive schemes. With the advent of increasingly capable AI, bad actors can amplify the potential scale and effectiveness of their operations, intensifying the challenge of balancing anonymity and trustworthiness online. In this paper, we analyze the value of a new tool to address this challenge: “personhood credentials” (PHCs), digital credentials that empower users to demonstrate that they are real people—not AIs—to online services, without disclosing any personal information. Such credentials can be issued by a range of trusted institutions—governments or otherwise. A PHC system, according to our definition, could be local or global, and does not need to be biometrics-based. Two trends in AI contribute to the urgency of the challenge: AI’s increasing indistinguishability (i.e., lifelike content and avatars, agentic activity) from people online, and AI’s increasing scalability (i.e., cost-effectiveness, accessibility). Drawing on a long history of research into anonymous credentials and “proof-of-personhood” systems, personhood credentials give people a way to signal their trustworthiness on online platforms, and offer service providers new tools for reducing misuse by bad actors. In contrast, existing countermeasures to automated deception—such as CAPTCHAs—are inadequate against sophisticated AI, while stringent identity verification solutions are insufficiently private for many use-cases. After surveying the benefits of personhood credentials, we also examine deployment risks and design challenges. We conclude with actionable next steps for policymakers, technologists, and standards bodies to consider in consultation with the public

    Design and evaluation of braced touch for touchscreen input stabilisation.

    Get PDF
    Incorporating touchscreen interaction into cockpit flight systems offers several potential advantages to aircraft manufacturers, airlines, and pilots. However, vibration and turbulence are challenges to reliable interaction. We examine the design space for braced touch interaction, which allows users to mechanically stabilise selections by bracing multiple fingers on the touchscreen before completing selection. Our goal is to enable fast and accurate target selection during high levels of vibration, without impeding interaction performance when vibration is absent. Three variant methods of braced touch are evaluated, using doubletap, dwell, or a force threshold in combination with heuristic selection criteria to discriminate intentional selection from concurrent braced contacts. We carried out an experiment to test the performance of these methods in both abstract selection tasks and more realistic flight tasks. The study results confirm that bracing improves performance during vibration, and show that doubletap was the best of the tested methods

    The effect of selected rest break activities on reaction time, balance, and perceived discomfort after one hour of simulated occupational whole-body vibration exposure in healthy adults

    Get PDF
    Copyright statement: This is an Open Access article distributed under the terms of the creative commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.This work was supported by Agrivita Canada, Mitacs Accelerate, University of Saskatchewan College of Medicine Research Award, University of Saskatchewan College of Medicine MPT Research Project Funding, and WorkSafeBC Ralph McGinn Postdoctoral Fellowship. The funding sources had no involvement in study design, data collection, analysis and interpretation of data, writing the manuscript, and decision to submit the article for publication.Peer ReviewedBackground & Objective Negative health effects from occupational whole-body vibration (WBV) exposure during machinery operation include alterations in proprioception, vestibular function, reaction time, stress, motor response, and decrements in musculoskeletal health. To reduce WBV exposure during machinery operation, it may be possible to incorporate short rest break activities throughout the day. This study aims to determine if there are intervention activities that can minimize decrements in cognitive, proprioceptive, and musculoskeletal effects related to WBV exposure during machine operation. Materials & Methods Eleven healthy adults participated in four 1-hour sessions of ecologically valid WBV exposure followed by one of four 5-minute activities: sitting, walking, 2 minutes of gaze stabilization exercise (GSE) coupled with 3 minutes of trunk mobility exercise (GSE+MOBIL), or 2 minutes of GSE coupled with a 3-minute walk (GSE+WALK). Baseline and post-activity measurements (rating of perceived discomfort, balance and postural sway measurements, 5-minute psychomotor vigilance task test) were submitted to a paired t-test to determine the effect of WBV exposure and activities on physical, cognitive, and sensorimotor systems and to a repeated measures ANOVA to determine any differences across activities. Results We observed degradation of the slowest 10% reaction speed outcomes between baseline and post-activity after walking (7.3%, p<0.05) and sitting (8.6%, p<0.05) but not after GSE+MOBIL or GSE+WALK activities. Slowest 10% reaction speeds after GSE+MOBIL activity was faster than all other activities. Rating of perceived discomfort was higher after SIT and WALK activities. There were no notable differences in balance outcomes. Conclusion When compared to sitting for 5 minutes, an activity including GSE and an active component, such as walking or trunk mobility exercises, resulted in maintenance of reaction time after WBV exposure. If confirmed in occupational environments, GSE may provide a simple, rapid, effective, and inexpensive means to protect against decrements in reaction time after WBV exposure

    Data collection costs in industrial environments for three occupational posture exposure assessment methods

    Get PDF
    BACKGROUND: Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. METHODS: Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. RESULTS: Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. CONCLUSIONS: This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models

    Impact of Excessive Daytime Sleepiness on The Safety and Health of Farmers in Saskatchewan

    Get PDF
    BACKGROUND: Sleep disorders may negatively impact the health and well-being of affected individuals. The resulting sleepiness and impaired cognitive functioning may also increase the risks for injury

    A route to sustainable aviation : a roadmap for the realization of aircraft components with electrical and structural multifunctionality

    Get PDF
    Increased electrification of aircraft power systems has been widely presented as a route toward meeting environmental and emissions targets for aircraft performance, via more-electric aircraft and future hybrid-electric aircraft concepts. In parallel, the superior mechanical performance of carbon fiber reinforced polymer (CFRP) has resulted in its increasing use for aircraft structures. The relatively low electrical conductivity of CFRP compared to traditional aluminum structures and copper conductors limits the use of structural CFRP structures as electrical elements, so separate systems are needed. This adds structural mass and volume to a system, negating some of the benefits of using CFRP. Closer integration of the composite structure and electrical power system (EPS), with an ultimate goal of achieving components with multifunctionality (combined thermal, electrical, and structural functionality), offers a route toward the light-weighting of these systems, thus supporting improvements in aircraft performance. This article presents a roadmap to achieve this multifunctionality, supported by the combination of introducing definitions for different levels of multifunctionality, associated design thresholds, and trades between the EPS and CFRP materials/structures. Existing multifunctional (MF) electrical-thermal-structural CFRP-based solutions are contextualized within this roadmap. This enables the realization of viable routes for developing MF systems for the strategic focus of future research efforts

    Walking away from back pain: one step at a time – a community-based randomised controlled trial

    Get PDF
    BACKGROUND: Low back pain is highly prevalent and a significant public health burden in Western society. Feasibility studies suggest personalised pedometer-driven walking is an acceptable and effective motivating tool in the management of chronic low back pain (CLBP ≥ 12 weeks). The proposed study will investigate pedometer-driven walking as a low cost, easily accessible, and sustainable means of physical activity to improve disability and clinical outcomes for people with CLBP in Saskatchewan, Canada. METHODS/DESIGN: A fully-powered single-blinded randomised controlled trial will compare back care advice and education with back care advice and education followed by a 12-week pedometer-driven walking programme in adults with CLBP. Adults with self-reported CLBP will be recruited from the community and screened for elibility. Two-hundred participants will be randomly allocated to one of two intervention groups. All participants will receive a single back care advice and education session with a physiotherapist. Participants in the walking group will also receive a physiotherapist-facilitated pedometer based walking programme. The physiotherapist will facilitate the participant to monitor and progress the walking programme, by phone, on a weekly basis over 10 weeks following two face-to-face sessions. Outcome measures of self-reported disability, physical activity, participants’ low back pain beliefs/perceptions, quality of life and direct/indirect cost estimates will be gathered at baseline, three months, six months, and 12 months by a different physiotherapist blinded to group allocation. Following intervention, focus groups will be used to explore participants’ thoughts and experiences of pedometer-driven walking as a management tool for CLBP. DISCUSSION: This paper describes the design of a community-based RCT to determine the effectiveness of a pedometer-driven walking programme in the management of CLBP. TRIAL REGISTRATION: United States National Institutes of Health Clinical Trails registry (http://ClinicalTrails.gov/) No. NCT02284958. Registered on 27(th) October 2014)

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    corecore