166 research outputs found

    Getting Better by Design: Evaluation of a programme to support the voluntary sector in Scotland

    Get PDF
    Better by Design was developed in 2013 by the Big Lottery Fund Scotland in response to the complex and changing landscape for voluntary sector organisations delivering services on the ground with people or communities. It aimed to support a process of change, and prioritised organisations focusing on social care, employability, health and housing where intervening earlier or preventing needs emerging could make a real difference. The programme encouraged sustainability in the widest sense to enable organisations to meet the needs of their beneficiaries better now and in the future.The chance to learn in this way and the challenge to habitual ways of thinking and doing, have made a significant change to mindsets in a number of organisations and at times, brought a new quality of engagement in partnership settings. This report shows that design-led approaches do have a great deal to contribute in creating the new organisational cultures of collaboration and mutual learning necessary for public service reform

    Improved synchronous production of Plasmodium falciparum gametocytes in vitro.

    No full text
    The sexual stages of the Plasmodium falciparum life cycle are attractive targets for vaccines and transmission blocking drugs. Difficulties in culturing and obtaining large amounts of sexual stage P. falciparum parasites, particularly early stages, have often limited research progress in this area. We present a new protocol which simplifies the process of stimulating gametocytogenesis leading to improved synchronous gametocyte production. This new method can be adapted to enrich for early stage gametocytes (I and II) with a higher degree of purity than has previously been achieved, using MACS magnetic affinity columns. The protocol described lends itself to large scale culturing and harvesting of synchronous parasites suitable for biochemical assays, northern blots, flow cytometry, microarrays and proteomic analysis

    What can we do with our stories? Reflections from the Faroes

    Get PDF
    In my efforts to refresh my social theory and develop new perspectives on evaluation I recently attended a social constructivism conference on Communication, Collaboration and Relationships in the Faroe Islands[1].  I’d been alerted to this opportunity by one of the organisers, Gro Emmertsen Lund, a Danish organisational consultant and author with a shared interest in reshaping evaluation (Lund, 2011).  As a freelance action researcher, this was my annual dose of CPD.  Like many people from the UK, this was new territory for me and I couldn’t resist the location and the conference aims to ‘increase the motivation and the joy of learning, teaching, leading and serving’ and ‘bring public services into synchrony with emerging world conditions’.  One of the keynote speakers was Ken Gergen who, amongst his many writings, articulates a vision of the researcher as an active agent in fashioning the future and research as a form of social action (Gergen, 2014).  &nbsp

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore