1,301 research outputs found

    The impact of college mergers in Further Education

    Get PDF

    An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Get PDF
    SummaryDiffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    BCL6 Controls the Expression of the B7-1/CD80 Costimulatory Receptor in Germinal Center B Cells

    Get PDF
    The BCL6 proto-oncogene encodes a transcriptional repressor required for the development of germinal centers (GCs) and implicated in the pathogenesis of GC-derived B cell lymphoma. Understanding the precise role of BCL6 in normal GC formation and in lymphomagenesis depends on the identification of genes that are direct targets of its transcriptional repression. Here we report that BCL6 directly controls the expression of B7–1/CD80, a costimulatory receptor involved in B–T cell interactions critical for the development of T cell–mediated antibody responses. Upon CD40 signaling, transcription of the CD80 gene is induced by the nuclear factor (NF)-κB transcription factor. Our results show that BCL6 prevents CD40-induced expression of CD80 by binding its promoter region in vivo and suppressing its transcriptional activation by NF-κB. Consistent with a physiologic role for BCL6 in suppressing CD80, the expression of these two genes is mutually exclusive in B cells, and BCL6-defective mice show increased expression of CD80 in B cells. The results suggest that BCL6 may directly control the ability of B cell to interact with T cells during normal GC development. In addition, these findings imply that T–B cell interactions may be disrupted in B cell lymphoma expressing deregulated BCL6 genes

    LA SCRITTURA MIGRANTE: LA MIA LINGUA E LA MIA NUOVA LINGUA ITALIANA

    Get PDF
    Acquisire una nuova lingua non è mai un percorso semplice. Il cammino che il migrante deve compiere per apprendere l'italiano è costellato di difficoltà e di ostacoli dovuti ad emozioni contrastanti, al  trauma causato dall'esperienza della migrazione, dalle condizioni, spesso di forte disagio, di lavoro, del contesto in cui si trova a svolgere una nuova vita, dalla qualità o meno dell'accoglienza, dalle possibilità reali, sul piano sociale, di integrazione. Lo scopo di questo articolo consiste nel mettere in evidenza il passaggio complesso dalla lingua madre alla cosiddetta lingua adottiva, mostrando come in taluni casi l'italiano, imparato nei corsi per stranieri o a scuola dai più giovani sia divenuto uno straordinario strumento grazie al quale poter evocare il paese d'origine e raccontare il proprio vissuto. Lo scrivere in una lingua diversa permette al migrante non solo di narrare fatti ed esperienze che magari preferirebbe non raccontare nella lingua madre, ma di diventare costruttore di cultura.   Learning a new language is never a simple task. The new-comer's experience of learning Italian is marked by difficulties and obstacles caused by contrasting emotions, the trauma from the experience of migration, the often difficult work conditions, the living conditions in the host country, the presence or absence of feeling welcomed, and the real chances for social integration. This paper aims at highlighting the complex passage from the mother tongue to the so-called adopted language, showing how in some cases learning Italian, thanks to courses for foreigners or as children at school, has become a wonderful tool for evoking the home country and telling about life there. Writing in another language allows migrants not only to recount facts and experiences that they might prefer not to tell in their own language, but it is a cultural building block as well

    The normal and fibrotic mouse lung classified by spatial proteomic analysis

    Get PDF
    Single cell classification is elucidating homeostasis and pathology in tissues and whole organs. We applied in situ spatial proteomics by multiplex antibody staining to routinely processed mouse lung, healthy and during a fibrosis model. With a limited validated antibody panel (24) we classify the normal constituents (alveolar type I and II, bronchial epithelia, endothelial, muscular, stromal and hematopoietic cells) and by quantitative measurements, we show the progress of lung fibrosis over a 4 weeks course, the changing landscape and the cell-specific quantitative variation of a multidrug transporter. An early decline in AT2 alveolar cells and a progressive increase in stromal cells seems at the core of the fibrotic process

    Active nuclear import and cytoplasmic retention of activation-induced deaminase

    Full text link
    The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.This work was supported by the Canadian Institutes of Health Research (MOP 84543) and a Canada Research Chair (to J.M.D.). A.O. was supported by a fellowship from the Canadian Institutes of Health Research Cancer Training Program at the IRCM. V.A.C. was supported in part by a Michel Saucier fellowship from the Louis-Pasteur Canadian Fund through the University of Montreal
    corecore