711 research outputs found
Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach
The increasing availability of temporal network data is calling for more
research on extracting and characterizing mesoscopic structures in temporal
networks and on relating such structure to specific functions or properties of
the system. An outstanding challenge is the extension of the results achieved
for static networks to time-varying networks, where the topological structure
of the system and the temporal activity patterns of its components are
intertwined. Here we investigate the use of a latent factor decomposition
technique, non-negative tensor factorization, to extract the community-activity
structure of temporal networks. The method is intrinsically temporal and allows
to simultaneously identify communities and to track their activity over time.
We represent the time-varying adjacency matrix of a temporal network as a
three-way tensor and approximate this tensor as a sum of terms that can be
interpreted as communities of nodes with an associated activity time series. We
summarize known computational techniques for tensor decomposition and discuss
some quality metrics that can be used to tune the complexity of the factorized
representation. We subsequently apply tensor factorization to a temporal
network for which a ground truth is available for both the community structure
and the temporal activity patterns. The data we use describe the social
interactions of students in a school, the associations between students and
school classes, and the spatio-temporal trajectories of students over time. We
show that non-negative tensor factorization is capable of recovering the class
structure with high accuracy. In particular, the extracted tensor components
can be validated either as known school classes, or in terms of correlated
activity patterns, i.e., of spatial and temporal coincidences that are
determined by the known school activity schedule
Activity clocks: spreading dynamics on temporal networks of human contact
Dynamical processes on time-varying complex networks are key to understanding
and modeling a broad variety of processes in socio-technical systems. Here we
focus on empirical temporal networks of human proximity and we aim at
understanding the factors that, in simulation, shape the arrival time
distribution of simple spreading processes. Abandoning the notion of wall-clock
time in favour of node-specific clocks based on activity exposes robust
statistical patterns in the arrival times across different social contexts.
Using randomization strategies and generative models constrained by data, we
show that these patterns can be understood in terms of heterogeneous
inter-event time distributions coupled with heterogeneous numbers of events per
edge. We also show, both empirically and by using a synthetic dataset, that
significant deviations from the above behavior can be caused by the presence of
edge classes with strong activity correlations
Predicting human mobility through the assimilation of social media traces into mobility models
Predicting human mobility flows at different spatial scales is challenged by
the heterogeneity of individual trajectories and the multi-scale nature of
transportation networks. As vast amounts of digital traces of human behaviour
become available, an opportunity arises to improve mobility models by
integrating into them proxy data on mobility collected by a variety of digital
platforms and location-aware services. Here we propose a hybrid model of human
mobility that integrates a large-scale publicly available dataset from a
popular photo-sharing system with the classical gravity model, under a stacked
regression procedure. We validate the performance and generalizability of our
approach using two ground-truth datasets on air travel and daily commuting in
the United States: using two different cross-validation schemes we show that
the hybrid model affords enhanced mobility prediction at both spatial scales.Comment: 17 pages, 10 figure
Gender homophily from spatial behavior in a primary school: a sociometric study
We investigate gender homophily in the spatial proximity of children (6 to 12
years old) in a French primary school, using time-resolved data on face-to-face
proximity recorded by means of wearable sensors. For strong ties, i.e., for
pairs of children who interact more than a defined threshold, we find
statistical evidence of gender preference that increases with grade. For weak
ties, conversely, gender homophily is negatively correlated with grade for
girls, and positively correlated with grade for boys. This different evolution
with grade of weak and strong ties exposes a contrasted picture of gender
homophily
Mitigation of infectious disease at school: targeted class closure vs school closure
School environments are thought to play an important role in the community
spread of airborne infections (e.g., influenza) because of the high mixing
rates of school children. The closure of schools has therefore been proposed as
efficient mitigation strategy, with however high social and economic costs:
alternative, less disruptive interventions are highly desirable. The recent
availability of high-resolution contact networks in school environments
provides an opportunity to design micro-interventions and compare the outcomes
of alternative mitigation measures. We consider mitigation measures that
involve the targeted closure of school classes or grades based on readily
available information such as the number of symptomatic infectious children in
a class. We focus on the case of a primary school for which we have
high-resolution data on the close-range interactions of children and teachers.
We simulate the spread of an influenza-like illness in this population by using
an SEIR model with asymptomatics and compare the outcomes of different
mitigation strategies. We find that targeted class closure affords strong
mitigation effects: closing a class for a fixed period of time -equal to the
sum of the average infectious and latent durations- whenever two infectious
individuals are detected in that class decreases the attack rate by almost 70%
and strongly decreases the probability of a severe outbreak. The closure of all
classes of the same grade mitigates the spread almost as much as closing the
whole school. Targeted class closure strategies based on readily available
information on symptomatic subjects and on limited information on mixing
patterns, such as the grade structure of the school, can be almost as effective
as whole-school closure, at a much lower cost. This may inform public health
policies for the management and mitigation of influenza-like outbreaks in the
community
Immunization strategies for epidemic processes in time-varying contact networks
Spreading processes represent a very efficient tool to investigate the
structural properties of networks and the relative importance of their
constituents, and have been widely used to this aim in static networks. Here we
consider simple disease spreading processes on empirical time-varying networks
of contacts between individuals, and compare the effect of several immunization
strategies on these processes. An immunization strategy is defined as the
choice of a set of nodes (individuals) who cannot catch nor transmit the
disease. This choice is performed according to a certain ranking of the nodes
of the contact network. We consider various ranking strategies, focusing in
particular on the role of the training window during which the nodes'
properties are measured in the time-varying network: longer training windows
correspond to a larger amount of information collected and could be expected to
result in better performances of the immunization strategies. We find instead
an unexpected saturation in the efficiency of strategies based on nodes'
characteristics when the length of the training window is increased, showing
that a limited amount of information on the contact patterns is sufficient to
design efficient immunization strategies. This finding is balanced by the large
variations of the contact patterns, which strongly alter the importance of
nodes from one period to the next and therefore significantly limit the
efficiency of any strategy based on an importance ranking of nodes. We also
observe that the efficiency of strategies that include an element of randomness
and are based on temporally local information do not perform as well but are
largely independent on the amount of information available
- …
