1,065 research outputs found

    Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    Get PDF
    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south

    A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: implications for sequence stratigraphy

    Get PDF
    A quantitative comparison of 20 literature case studies of fluvial sedimentary successions tests common assumptions made in published models of alluvial architecture concerning (1) inverse proportionality between channel-deposit density and floodplain aggradation rates, and (2) resulting characteristics of channel-body geometries and connectedness. Our results do not support the relationships predicted by established stratigraphy models: the data suggest that channel-body density, geometry, and stacking pattern are not reliable diagnostic indicators of rates of accommodation creation. Hence, these architectural characteristics alone do not permit the definition of accommodation-based “systems tracts” and “settings”, and this calls into question current sequence stratigraphic practice in application to fluvial successions

    Possible trace fossils of putative termite origin in the Lower Jurassic (Karoo Supergroup) of South Africa and Lesotho

    Get PDF
    Complex structures in the sandstones of the Lower Jurassic aeolian Clarens Formation (Karoo Supergroup) are found at numerous localities throughout southern Africa, and can be assigned to five distinct architectural groups: (1) up to 3.3-m high, free-standing, slab-shaped forms of bioturbated sandstones with elliptical bases, orientated buttresses and an interconnecting large burrow system; (2) up to 1.2-m high, free-standing, irregular forms of bioturbated sandstones with 2-cm to 4-cm thick, massive walls, empty chambers and vertical shafts; (3) about 0.15-m to 0.25-m high, mainly bulbous, multiple forms with thin walls (<2 cm), hollow chambers with internal pillars and bridges; (4) about 0.15-m to 0.2-m (maximum 1-m) high, free-standing forms of aggregated solitary spheres associated with massive horizontal, orientated capsules or tubes, and meniscate tubes; and (5) about 5 cmin diameter, ovoid forms with weak internal shelving in a close-fitting cavity. Based on size, wall thickness, orientation and the presence of internal chambers, these complex structures are tentatively interpreted as ichnofossils of an Early Jurassic social organism; the different architectures are reflective of the different behaviours of more than one species, the history of structural change in architectural forms (ontogenetic series) or an architectural adaptation to local palaeoclimatic variability. While exact modern equivalents are unknown, some of these ichnofossils are comparable to nests (or parts of nests) constructed by extant termites, and thus these Jurassic structures are very tentatively interpreted here as having been made by a soil-dwelling social organism, probably of termite origin. This southern African discovery, along with reported Triassic and Jurassic termite ichnofossils from North America, supports previous hypotheses that sociality in insects, particularity in termites, likely evolved prior to the Pangea breakup in the Early Mesozoic

    Distribution of sedimentary rock types through time in a back-arc basin: A case study from the Jurassic of the Greater Caucasus (Northern Neotethys)

    Get PDF
    Abstract The evolution of sedimentary basins can be explored by analyzing the changes in their lithologies and lithofacies (i.e. predominant lithologies). The Greater Caucasus Basin, which was located at the northern margin of the Neotethys Ocean, represents a complete Sinemurian-Tithonian succession. A quantitative analysis of compiled datasets suggests that principal lithologies and lithofacies are represented by siliciclastics, shale and carbonates. The relative abundance of siliciclastics and shale decreased throughout the Jurassic, whereas that of carbonates increased. Evaporites are known from the Upper Jurassic, while volcaniclastics and volcanics, as well as coals, are known only in the Lower to Middle Jurassic. Siliceous rocks are extremely rare. Lithology and lithofacies proportions change accordingly. The Sinemurian-Bathonian sedimentary complex is siliciclastic-and-shale-dominated, whereas the Callovian-Tithonian sedimentary complex is carbonate-dominated. A major change in the character of sedimentation occurred during the Aalenian-Callovian time interval. Regional transgressions and regressions were more important controls of changes in the sedimentary rock proportions than average basin depth. Landward shoreline shifts were especially favorable for carbonate accumulation, whereas siliciclastics and shale were deposited preferentially in regressive settings. An extended area of the marine basin, its lower average depth, and a sharp bathymetric gradient favored a higher diversity of sedimentation. An orogeny at the Triassic-Jurassic transition was responsible for a large proportion of siliciclastics and extensive conglomerate deposition. An arcarc collision in the Middle Jurassic also enhanced the siliciclastic deposition. Both phases of tectonic activity were linked with an increase in volcanics and volcaniclastics. Volcanism itself might have been an important control on sedimentation. A transition to carbonate-dominated sedimentation occurred in the Late Jurassic, reflecting a tectonically calm period

    The Method of Sequence Stratigraphy

    No full text
    ABSTRAC

    Discrimination between wave-ravinement surfaces and bedset boundaries in Pliocene shallow-marine deposits, Crotone Basin, southern Italy: An integrated sedimentological, micropalaeontological and mineralogical approach

    Get PDF
    4siThe lower Pliocene Belvedere Formation, cropping out in the Crotone Basin, southern Italy, exhibits a metre-scale to decametre-scale shallow-marine cyclicity that shares features of both high-frequency sequences linked to shoreline shifts and controlled by minor relative sea-level and/or sediment supply changes, and sedimentological cycles unrelated to shoreline shifts. In order to better understand the high-frequency sequence stratigraphic framework of this succession, an integration of sedimentological, micropalaeontological (microforaminifera assemblages) and mineralogical (heavy mineral abundance) data is used. From a sedimentological/stratigraphic point of view, wave-ravinement surfaces bounding high-frequency sequences, and associated substrate-controlled ichnofacies, are prominent in outcrop and document environmental and water-depth changes, whereas bedset boundaries separating sedimentological cycles have a more subtle field appearance and are only associated with changes of environmental energy. Moreover, condensed deposits are present only above wave-ravinement surfaces, and the high-frequency sequences bounded by these surfaces have a thickness that is an order of magnitude greater than that of the bedsets. Micro-foraminifera assemblages may change, and the content of heavy minerals usually increases, across wave-ravinement surfaces, whereas both parameters do not change significantly across bedset boundaries. The abundance of heavy minerals is systematically higher, with respect to the underlying and overlying deposits, in the condensed shell beds that overlie wave-ravinement surfaces. An integrated sedimentological, micropalaeontological and mineralogical approach represents a powerful tool to discriminate between wave-ravinement surfaces bounding high-frequency sequences and bedset boundaries, and in general to investigate at the intra high-frequency sequence scale. This integrated approach is expected to be very useful in the study of potentially all shallow-marine successions composed of small-scale cycles, in order to delineate a detailed sequence stratigraphic framework and understand the factors that controlled the cyclicity.partially_openopenZecchin, Massimo; Caffau, Mauro; Catuneanu, Octavian; Lenaz, DavideZecchin, Massimo; Caffau, Mauro; Catuneanu, Octavian; Lenaz, David
    corecore