648 research outputs found
MMpred: functional miRNA – mRNA interaction analyses by miRNA expression prediction
Background: MicroRNA (miRNA) directed gene repression is an important mechanism of posttranscriptional
regulation. Comprehensive analyses of how microRNA influence biological processes requires paired
miRNA-mRNA expression datasets. However, a review of both GEO and ArrayExpress repositories revealed few
such datasets, which was in stark contrast to the large number of messenger RNA (mRNA) only datasets. It is of
interest that numerous primary miRNAs (precursors of microRNA) are known to be co-expressed with coding
genes (host genes).
Results: We developed a miRNA-mRNA interaction analyses pipeline. The proposed solution is based on two
miRNA expression prediction methods – a scaling function and a linear model. Additionally, miRNA-mRNA anticorrelation
analyses are used to determine the most probable miRNA gene targets (i.e. the differentially
expressed genes under the influence of up- or down-regulated microRNA). Both the consistency and accuracy
of the prediction method is ensured by the application of stringent statistical methods. Finally, the predicted
targets are subjected to functional enrichment analyses including GO, KEGG and DO, to better understand the
predicted interactions.
Conclusions: The MMpred pipeline requires only mRNA expression data as input and is independent of third
party miRNA target prediction methods. The method passed extensive numerical validation based on the
binding energy between the mature miRNA and 3’ UTR region of the target gene. We report that MMpred is
capable of generating results similar to that obtained using paired datasets. For the reported test cases we
generated consistent output and predicted biological relationships that will help formulate further testable
hypotheses
Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population
Background
Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2) gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry.
Methods
We genotyped four single nucleotide polymorphisms (SNPs) of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372) in 831 subjects with diabetes and 437 control subjects.
Results
The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR) of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3). For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7).
Conclusion
Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups
TCF7L2 rs7903146-macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet
BACKGROUND:
Transcription factor 7-like 2 (TCF7L2) rs7903146 associates with type 2 diabetes and may operate via impaired glucagon-like peptide 1 secretion, which is stimulated more by fat than by carbohydrate ingestion.
OBJECTIVE:
The objective was to examine the interaction between TCF7L2 rs7903146 and dietary fat and carbohydrate [high-fat, low-carbohydrate: 40-45% of energy as fat (HF); compared with low-fat, high-carbohydrate: 20-25% of energy as fat (LF)] in obese individuals' responses to a 10-wk hypoenergetic diet (-600 kcal/d).
DESIGN:
European, obese participants (n = 771) were randomly assigned to receive an HF or an LF diet. Body weight, fat mass (FM), fat-free mass (FFM), waist circumference (WC), resting energy expenditure (REE), fasting fat oxidation in percentage of REE (FatOx), homeostasis model assessed insulin release (HOMA-beta), and HOMA-insulin resistance (HOMA-IR) were determined at baseline and after the intervention; 739 individuals were genotyped for rs7903146.
RESULTS:
Average weight loss was 6.9 kg with the LF and 6.6 kg with the HF (difference between diets, NS) diet. Among individuals who were homozygous for the T-risk allele, those in the HF diet group experienced smaller weight losses (Deltaweight) (2.6 kg; P = 0.009; n = 622), smaller DeltaFFM (1.6 kg; P = 0.027; n = 609), smaller DeltaWC (3.3 cm; P = 0.010; n = 608), and a smaller DeltaHOMA-IR (1.3 units; P = 0.004; n = 615) than did the LF diet group. For C allele carriers, there were no differences between the HF and LF diet groups. For the HF diet group, each additional T allele was associated with a reduced loss of FM (0.67 kg; P = 0.019; n = 609). TCF7L2 rs7903146 was not associated with DeltaREE, DeltaFatOx, DeltaHOMA-beta, or dropout.
CONCLUSION:
Our results suggest that obese individuals who are homozygous for the TCF7L2 rs7903146 T-risk allele are more sensitive to LF than to HF weight-loss diets
Interpretation of vaccine associated neurological adverse events:a methodological and historical review
As a result of significant recent scientific investment, the range of vaccines available for COVID-19 prevention continues to expand and uptake is increasing globally. Although initial trial safety data have been generally reassuring, a number of adverse events, including vaccine induced thrombosis and thrombocytopenia (VITT), have come to light which have the potential to undermine the success of the vaccination program. However, it can be difficult to interpret available data and put these into context and to communicate this effectively. In this review, we discuss contemporary methodologies employed to investigate possible associations between vaccination and adverse neurological outcomes and why determining causality can be challenging. We demonstrate these issues by discussing relevant historical exemplars and explore the relevance for the current pandemic and vaccination program. We also discuss challenges in understanding and communicating such risks to clinicians and the general population within the context of the ‘infodemic’ facilitated by the Internet and other media
Unreliable numbers: error and harm induced by bad design can be reduced by better design
Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable
Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children
Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis (vol 42, pg 579, 2010)
Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
- …
