8,673 research outputs found
Non-linear Coulomb blockade microscopy of a correlated one-dimensional quantum dot
We evaluate the chemical potential of a one-dimensional quantum dot, coupled
to an atomic force microscope tip. The dot is described within the Luttinger
liquid framework and the conductance peaks positions as a function of the tip
location are calculated in the linear and non-linear transport regimes for an
arbitrary number of particles. The differences between the chemical potential
oscillations induced by Friedel and Wigner terms are carefully analyzed in the
whole range of interaction strength. It is shown that Friedel oscillations,
differently from the Wigner ones, are sensitive probes to detect excited spin
states and collective spin density waves involved in the transport.Comment: 4 figure
AFM probe for the signatures of Wigner correlations in the conductance of a one-dimensional quantum dot
The transport properties of an interacting one-dimensional quantum dot
capacitively coupled to an atomic force microscope probe are investigated. The
dot is described within a Luttinger liquid framework which captures both
Friedel and Wigner oscillations. In the linear regime, we demonstrate that both
the conductance peak position and height oscillate as the tip is scanned along
the dot. A pronounced beating pattern in the conductance maximum is observed,
connected to the oscillations of the electron density. Signatures of the
effects induced by a Wigner molecule are clearly identified and their stability
against the strength of Coulomb interactions are analyzed. While the
oscillations of the peak position due to Wigner get enhanced at strong
interactions, the peak height modulations are suppressed as interactions grow.
Oscillations due to Friedel, on the other hand, are robust against interaction.Comment: 9 figure
Probing Wigner correlations in a suspended carbon nanotube
The influence of the electron-vibron coupling on the transport properties of
a strongly interacting quantum dot built in a suspended carbon nanotube is
analyzed. The latter is probed by a charged AFM tip scanned along the axis of
the CNT which induces oscillations of the chemical potential and of the linear
conductance. These oscillations are due to the competition between finite-size
effects and the formation of a Wigner molecule for strong interactions. Such
oscillations are shown to be suppressed by the electron-vibron coupling. The
suppression is more pronounced in the regime of weak Coulomb interactions,
which ensures that probing Wigner correlations in such a system is in principle
possible
Temperature-induced emergence of Wigner correlations in a STM-probed one-dimensional quantum dot
The temperature-induced emergence of Wigner correlations over finite-size
effects in a strongly interacting one-dimensional quantum dot are studied in
the framework of the spin coherent Luttinger liquid. We demonstrate that, for
temperatures comparable with the zero mode spin excitations, Friedel
oscillations are suppressed by the thermal fluctuations of higher spin modes.
On the other hand, the Wigner oscillations, sensitive to the charge mode only,
are stable and become more visible. This behavior is proved to be robust both
in the thermal electron density and in the linear conductance in the presence
of an STM tip. This latter probe is not directly proportional to the electron
density and may confirm the above phenomena with complementary and additional
information
Theory of the STM detection of Wigner molecules in spin incoherent CNTs
The linear conductance of a carbon nanotube quantum dot in the Wigner
molecule regime, coupled to two scanning tunnel microscope tips is inspected.
Considering the high temperature regime, the nanotube quantum dot is described
by means of the spin-incoherent Luttinger liquid picture. The linear
conductance exhibits spatial oscillations induced by the presence of the
correlated, molecular electron state. A power-law scaling of the electron
density and of the conductance as a function of the interaction parameter are
found. They confirm local transport as a sensitive tool to investigate the
Wigner molecule. The double-tip setup allows to explore different transport
regimes with different shapes of the spatial modulation, all bringing
information about the Wigner molecule
Correlation functions for the detection of Wigner molecules in a one-channel Luttinger liquid quantum dot
In one-channel, finite-size Luttinger one-dimensional quantum dots, both
Friedel oscillations and Wigner correlations induce oscillations in the
electron density with the same wavelength, pinned at the same position.
Therefore, observing such a property does not provide any hint about the
formation of a Wigner molecule when electrons interact strongly and other tools
must be employed to assess the formation of such correlated states. We compare
here the behavior of three different correlation functions and demonstrate that
the integrated two point correlation function, which represents the probability
density of finding two particles at a given distance, is the only faithful
estimator for the formation of a correlated Wigner molecule.Comment: 6 pages, 5 figure
Testing for co-integration in vector autoregressions with non-stationary volatility
Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with nonstationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special cases. We show that the conventional rank statistics of Johansen (1988,1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, nor to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown to perform remarkably well in practice.Cointegration; non-stationary volatility; trace and maximum eigenvalue tests; wild bootstrap
Constraints on parameters of radiatively decaying dark matter from the galaxy cluster 1E0657-56
We derived constraints on parameters of a radiatively decaying warm dark
matter particle, e.g., the mass and mixing angle for a sterile neutrino, using
Chandra X-ray spectra of a galaxy cluster 1E0657-56 (the ``bullet'' cluster).
The constraints are based on nondetection of the sterile neutrino decay
emission line. This cluster exhibits spatial separation between the hot
intergalactic gas and the dark matter, helping to disentangle their X-ray
signals. It also has a very long X-ray observation and a total mass measured
via gravitational lensing. This makes the resulting constraints on sterile
neutrino complementary to earlier results that used different cluster mass
estimates. Our limits are comparable to the best existing constraints.Comment: 6p
Negative differential conductance induced by spin-charge separation
Spin-charge states of correlated electrons in a one-dimensional quantum dot
attached to interacting leads are studied in the non-linear transport regime.
With non-symmetric tunnel barriers, regions of negative differential
conductance induced by spin-charge separation are found. They are due to a
correlation-induced trapping of higher-spin states without magnetic field, and
associated with a strong increase in the fluctuations of the electron spin.Comment: REVTEX, 4 pages including 3 figures; Accepted for publication on
Physical Review Letter
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
Many key macro-economic and ?nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special cases. We show that the conventional rank statistics computed as in Johansen (1988,1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identi?ed inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, nor to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown to perform very well in practice.co-integration; non-stationary volatility; trace and maximum eigenvalue tests; wild bootstrap
- …
