50 research outputs found
Topological Analysis of Metabolic Networks Integrating Co-Segregating Transcriptomes and Metabolomes in Type 2 Diabetic Rat Congenic Series
Background: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus is caused by complex organ-specific cellular mechanisms contributing to impaired insulin secretion and insulin resistance. Methods: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualise shortest paths between metabolites and genes significantly associated with each genomic block. Results: Despite strong genomic similarities (95-99%) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific metabotypes (mQTL) and genome-wide expression traits (eQTL). Variation in key metabolites like glucose, succinate, lactate or 3-hydroxybutyrate, and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing shortest path length drove prioritization of biological validations by gene silencing. Conclusions: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulations and to characterize novel functional roles for genes determining tissue-specific metabolism
Translational study identifies XPF and MUS81 as predictive biomarkers for oxaliplatin-based peri-operative chemotherapy in patients with esophageal adenocarcinoma
Oxaliplatin-based chemotherapy is used to treat patients with esophageal adenocarcinoma (EAC), but no biomarkers are currently available for patient selection. We performed a prospective, clinical trial to identify potential biomarkers associated with clinical outcomes. Tumor tissue was obtained from 38 patients with resectable EAC before and after 2 cycles of oxaliplatin-fluorouracil chemotherapy. Pre-treatment mRNA expression of 280 DNA repair (DNAR) genes was tested for association with histopathological regression at surgery, disease-free survival (DFS) and overall survival (OS). High expression of 13 DNA damage repair genes was associated with DFS less than one year (P < 0.05); expression of 11 DNAR genes were associated with worse OS (P < 0.05). From clinical associations with outcomes, two genes, ERCC1 and EME1, were identified as candidate biomarkers. In cell lines in vitro, we showed the mechanism of action related to repair of oxaliplatin-induced DNA damage by depletion and knockout of protein binding partners of the candidate biomarkers, XPF and MUS81 respectively. In clinical samples from the clinical trial, pre-treatment XPF protein levels were associated with pathological response, and MUS81 protein was associated with 1-year DFS. XPF and MUS81 merit further validation in prospective clinical trials as biomarkers that may predict clinical response of EAC to oxaliplatin-based chemotherapy
COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study
Background:
Individuals with cancer, particularly those who are receiving systemic anticancer treatments, have been postulated to be at increased risk of mortality from COVID-19. This conjecture has considerable effect on the treatment of patients with cancer and data from large, multicentre studies to support this assumption are scarce because of the contingencies of the pandemic. We aimed to describe the clinical and demographic characteristics and COVID-19 outcomes in patients with cancer. /
Methods:
In this prospective observational study, all patients with active cancer and presenting to our network of cancer centres were eligible for enrolment into the UK Coronavirus Cancer Monitoring Project (UKCCMP). The UKCCMP is the first COVID-19 clinical registry that enables near real-time reports to frontline doctors about the effects of COVID-19 on patients with cancer. Eligible patients tested positive for severe acute respiratory syndrome coronavirus 2 on RT-PCR assay from a nose or throat swab. We excluded patients with a radiological or clinical diagnosis of COVID-19, without a positive RT-PCR test. The primary endpoint was all-cause mortality, or discharge from hospital, as assessed by the reporting sites during the patient hospital admission. /
Findings:
From March 18, to April 26, 2020, we analysed 800 patients with a diagnosis of cancer and symptomatic COVID-19. 412 (52%) patients had a mild COVID-19 disease course. 226 (28%) patients died and risk of death was significantly associated with advancing patient age (odds ratio 9·42 [95% CI 6·56–10·02]; p<0·0001), being male (1·67 [1·19–2·34]; p=0·003), and the presence of other comorbidities such as hypertension (1·95 [1·36–2·80]; p<0·001) and cardiovascular disease (2·32 [1·47–3·64]). 281 (35%) patients had received cytotoxic chemotherapy within 4 weeks before testing positive for COVID-19. After adjusting for age, gender, and comorbidities, chemotherapy in the past 4 weeks had no significant effect on mortality from COVID-19 disease, when compared with patients with cancer who had not received recent chemotherapy (1·18 [0·81–1·72]; p=0·380). We found no significant effect on mortality for patients with immunotherapy, hormonal therapy, targeted therapy, radiotherapy use within the past 4 weeks. /
Interpretation:
Mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. We are not able to identify evidence that cancer patients on cytotoxic chemotherapy or other anticancer treatment are at an increased risk of mortality from COVID-19 disease compared with those not on active treatment. /
Funding:
University of Birmingham, University of Oxford
Using honey to heal diabetic foot ulcers
Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring
Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden
Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression
Transcriptome Profiling in Rat Inbred Strains and Experimental Cross Reveals Discrepant Genetic Architecture of Genome-Wide Gene Expression
To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1Mb-183Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GKxBN)F2 offspring. Within each congenic we identified 73 to 1,351 differentially expressed genes (DEG), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localised outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately two-fold expression changes, consistent with mono-allelic expression. Altered biological pathways were replicated between congenics sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2,735 eQTLs in the F2 cross, including 26% predominantly cis-regulated genes which validated DEG in congenics. A hotspot of over 300 eQTLs in a 10cM region of chromosome 1 was enriched in DEG in a congenic strain. However, many DEG among congenics, GK and BN did not replicate as eQTLs in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation and suggests a prominent impact of epistasis and mono-allelic expression on gene transcription.</p
Systems Genetics of Hepatic Metabolome Reveals Octopamine as a Target for Non-Alcoholic Fatty Liver Disease Treatment.
Non-alcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. To disentangle etiological relationships between these conditions and identify genetically-determined metabolites involved in NAFLD processes, we mapped 1H nuclear magnetic resonance (NMR) metabolomic and disease-related phenotypes in a mouse F2 cross derived from strains showing resistance (BALB/c) and increased susceptibility (129S6) to these diseases. Quantitative trait locus (QTL) analysis based on single nucleotide polymorphism (SNP) genotypes identified diet responsive QTLs in F2 mice fed control or high fat diet (HFD). In HFD fed F2 mice we mapped on chromosome 18 a QTL regulating liver micro- and macrovesicular steatosis and inflammation, independently from glucose intolerance and adiposity, which was linked to chromosome 4. Linkage analysis of liver metabolomic profiling data identified a QTL for octopamine, which co-localised with the QTL for liver histopathology in the cross. Functional relationship between these two QTLs was validated in vivo in mice chronically treated with octopamine, which exhibited reduction in liver histopathology and metabolic benefits, underlining its role as a mechanistic biomarker of fatty liver with potential therapeutic applications
Single Nucleotide Polymorphisms in the Wnt and BMP Pathways and Colorectal Cancer Risk in a Spanish Cohort
BACKGROUND: Colorectal cancer (CRC) is considered a complex disease, and thus the majority of the genetic susceptibility is thought to lie in the form of low-penetrance variants following a polygenic model of inheritance. Candidate-gene studies have so far been one of the basic approaches taken to identify these susceptibility variants. The consistent involvement of some signaling routes in carcinogenesis provided support for pathway-based studies as a natural strategy to select genes that could potentially harbour new susceptibility loci. METHODOLOGY/PRINCIPAL FINDINGS: We selected two main carcinogenesis-related pathways: Wnt and BMP, in order to screen the implicated genes for new risk variants. We then conducted a case-control association study in 933 CRC cases and 969 controls based on coding and regulatory SNPs. We also included rs4444235 and rs9929218, which did not fulfill our selection criteria but belonged to two genes in the BMP pathway and had consistently been linked to CRC in previous studies. Neither allelic, nor genotypic or haplotypic analyses showed any signs of association between the 37 screened variants and CRC risk. Adjustments for sex and age, and stratified analysis between sporadic and control groups did not yield any positive results either. CONCLUSIONS/SIGNIFICANCE: Despite the relevance of both pathways in the pathogenesis of the disease, and the fact that this is indeed the first study that considers these pathways as a candidate-gene selection approach, our study does not present any evidence of the presence of low-penetrance variants for the selected markers in any of the considered genes in our cohort
Business schools in crisis
Economic, political, and demographic changes, technological advances, two crashes of the economy, ethical scandals, and other developments in the business environment have strained the roles and enrollments of American universities' business schools. The b-schools have not responded adequately. Prevailing theories in many of the management disciplines have broken down, partly as a result of the same environmental changes. Again, schools and curricula have not adapted. Collegiate business education is in dire crisis. In this paper we document the crisis, note measures that have been taken - both constructive and otherwise - and make further suggestions for improving the situation
Epidermis influence on the gas exchanges around a produce
The exponential decay of water loss with time from freshly harvested has been confronted to various mathematical models of the interaction between air humidity and surface resistance of the cucumber over time. Simulation using the Finite Element Method (FEM) allows complex geometry to be taken into account. Fluxes through small surface apertures like stomata or film-microperforations can be numerically simulated without introducing instability in the spatial modelling. It is therefore possible to investigate the mechanisms modifying the permeance of the skin, the importance of the chemical potential as a driving force in the transport phenomenon, as well as the shape of the stomatal opening
