3,014 research outputs found
A Readout System for the STAR Time Projection Chamber
We describe the readout electronics for the STAR Time Projection Chamber. The
system is made up of 136,608 channels of waveform digitizer, each sampling 512
time samples at 6-12 Mega-samples per second. The noise level is about 1000
electrons, and the dynamic range is 800:1, allowing for good energy loss
() measurement for particles with energy losses up to 40 times minimum
ionizing. The system is functioning well, with more than 99% of the channels
working within specifications.Comment: 22 pages + 8 separate figures; 2 figures are .jpg photos to appear in
Nuclear Instruments and Method
Bulk Properties in Au+Au Collisions at = 9.2 GeV in STAR Experiment at RHIC
One of the primary goals of high-energy heavy-ion collisions is to establish
the QCD phase diagram and search for possible phase boundaries. The planned
RHIC energy scan program will explore this exciting physics topic using
heavy-ion collisions at various center of mass energies. The first test run
with Au+Au collisions at = 9.2 GeV took place in early 2008. We
present the results on identified particle ratios, azimuthal anisotropy
parameters (v1 and v2) and HBT at midrapidity using data from this run. These
results are compared to data for both lower and higher center of mass energies
at the AGS, SPS and RHIC. These new data demonstrate the capabilities of the
STAR detector for exploring the QCD phase diagram.Comment: 4 pages, 2 figures: Re-submitted to appear in proceedings for Quark
Matter 2009, March 30 - April 4, Knoxville, Tennesse
The Origin And Loss Of Periodic Patterning In The Turtle Shell
The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell
Calibration of Plastic Phoswich Detectors for Charged Particle Detection
The response of an array of plastic phoswich detectors to ions of has been measured from =12 to 72 MeV. The detector response has been
parameterized by a three parameter fit which includes both quenching and high
energy delta-ray effects. The fits have a mean variation of with
respect to the data.Comment: 17 pages, 5 figure
The Embryonic Transcriptome Of The Red-Eared Slider Turtle (Trachemys Scripta)
The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N-50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences
Near-threshold production of the multi-strange hyperon
The yield for the multi-strange hyperon has been measured in 6 AGeV
Au+Au collisions via reconstruction of its decay products and
, the latter also being reconstructed from its daughter tracks of
and p. The measurement is rather close to the threshold for
production and therefore provides an important test of model predictions. The
measured yield for and are compared for several
centralities. In central collisions the yield is found to be in
excellent agreement with statistical and transport model predictions,
suggesting that multi-strange hadron production approaches chemical equilibrium
in high baryon density nuclear matter.Comment: Submitted to PR
Laying the groundwork at the AGS: Recent results from experiment E895
The E895 Collaboration at the Brookhaven AGS has performed a systematic
investigation of Au+Au collisions at 2-8 AGeV, using a large-acceptance Time
Projection Chamber. In addition to extensive measurements of particle flow,
spectra, two-particle interferometry, and strangeness production, we have
performed novel hybrid analyses, including azimuthally-sensitive pion HBT,
extraction of the six-dimensional pion phasespace density, and a first
measurement of the Lambda-proton correlation function.Comment: Presented at Quark Matter 2001, 8 pages, 5 figure
Recommended from our members
Sexual dimorphism in immune development and in response to nutritional intervention in neonatal piglets
Although sex disparity in immunological function and susceptibility to various inflammatory and infectious disease is recognized in adults, far less is known about the situation in young infants during immune development. We have used an outbred piglet model to explore potential early sex disparity underlying both mucosal immune development and systemic responses to novel antigen. Despite similarities in intestinal barrier function and therefore, presumably, antigen exposure, females had less CD172+ (Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared to males, along with greater regulatory T-cell numbers. This suggests that, during infancy, females may have greater potential for local immune regulation than their male counterparts. However, females also presented with significantly greater systemic antibody responses to injected ovalbumin and dietary soya. Females also synthesized significantly more IgA in mesenteric lymph nodes, whereas males synthesized more in caecal mucosa, suggesting that plasma cells were retained within the MLN in females, but increased numbers of plasma cells circulated through to the mucosal tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on the developing immune system were also sex-dependent. Our results may start to explain inconsistencies in outcomes of trials of functional foods in infants, as distinction between males and females is seldom made. Since later functionality of the immune system is highly dependent on appropriate development during infancy, stratifying nutritional interventions by sex may present a novel means of optimizing treatments and preventative strategies to reduce the risk of the development of immunological disorders in later life
- …
