1,388 research outputs found
The Origin And Loss Of Periodic Patterning In The Turtle Shell
The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell
The Embryonic Transcriptome Of The Red-Eared Slider Turtle (Trachemys Scripta)
The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N-50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences
The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC
The STAR Time Projection Chamber (TPC) is used to record collisions at the
Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a
suite of detectors that surrounds the interaction vertex. The TPC provides
complete coverage around the beam-line, and provides complete tracking for
charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass
frame. Charged particles with momenta greater than 100 MeV/c are recorded.
Multiplicities in excess of 3,000 tracks per event are routinely reconstructed
in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the
largest TPC in the world.Comment: 28 pages, 11 figure
Azimuthal anisotropy of K0s and Lambda prduction at mid-rapidity from Au+Au collisions at root s = 130 GeV
We report STAR results on the azimuthal anisotropy parameter v2 for strange
particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV
at RHIC. The value of v2 as a function of transverse momentum of the produced
particles pt and collision centrality is presented for both particles up to pt
3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2
measurement is compared with hydrodynamic model calculations. The physics
implications of the pt integrated v2 magnitude as a function of particle mass
are also discussed.Comment: 6 pages, 4 figures, by the STAR collaboratio
Production of Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision
We present the first data on pair production accompanied by nuclear
breakup in ultra-peripheral gold-gold collisions at a center of mass energy of
200 GeV per nucleon pair. The nuclear breakup requirement selects events at
small impact parameters, where higher-order corrections to the pair production
cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and
the other using lowest-order quantum electrodynamics (QED); the latter includes
the photon virtuality. The cross section, pair mass, rapidity and angular
distributions are in good agreement with both calculations. The pair transverse
momentum, , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the
cross section. The and spectra are similar, with no evidence
for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in
Phys. Rev.
Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
We report new STAR measurements of mid-rapidity yields for the ,
, , , , ,
particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity
yields for the , , particles in Au+Au at
\sNN{200}. We show that at a given number of participating nucleons, the
production of strange hadrons is higher in Cu+Cu collisions than in Au+Au
collisions at the same center-of-mass energy. We find that aspects of the
enhancement factors for all particles can be described by a parameterization
based on the fraction of participants that undergo multiple collisions
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon
production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0
gamma gamma were detected in the
Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic
Heavy Ion Collider. The eta -> gamma gamma decay was also observed and
constituted the first eta measurement by STAR. The first direct photon cross
section measurement by STAR is also presented, the signal was extracted
statistically by subtracting the pi^0, eta, and omega(782) decay background
from the inclusive photon distribution observed in the calorimeter. The
analysis is described in detail, and the results are found to be in good
agreement with earlier measurements and with next-to-leading order perturbative
QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted
by Phys. Rev.
- …
