3,585 research outputs found

    Automating first-principles phase diagram calculations

    Get PDF
    Devising a computational tool that assesses the thermodynamic stability of materials is among the most important steps required to build a “virtual laboratory,” where materials could be designed from first principles without relying on experimental input. Although the formalism that allows the calculation of solid-state phase diagrams from first principles is well established, its practical implementation remains a tedious process. The development of a fully automated algorithm to perform such calculations serves two purposes. First, it will make this powerful tool available to a large number of researchers. Second, it frees the calculation process from arbitrary parameters, guaranteeing that the results obtained are truly derived from the underlying first-principles calculations. The proposed algorithm formalizes the most difficult step of phase diagram calculations, namely the determination of the “cluster expanison,” which is a compact representation of the configurational dependence of the alloy’s energy. This is traditionally achieved by a fit of the unknown interaction parameters of the cluster expansion to a set of structural energies calculated from first principles. We present a formal statistical basis for the selection of both the interaction parameters to include in the cluster expansion and the structures to use to determine them. The proposed method relies on the concepts of cross-validation and variance minimization. An application to the calculation of the phase diagram of the Si-Ge, CaO-MgO, Ti-Al, and Cu-Au systems is presented

    First Principles Modeling for Research and Design of New Materials

    Get PDF
    First principles computation can be used to investigate an design materials in ways that can not be achieved with experimental means. We show how computations can be used to rapidly capture the essential physics that determines the useful properties in different applications. Some applications for predicting crystal structure, thermodynamic and kinetic properties, and phase stability are discussed. This first principles tool set will be demonstrated with applications from rechargeable batteries and hydrogen storage materials.Singapore-MIT Alliance (SMA

    On the Balance of Intercalation and Conversion Reactions in Battery Cathodes

    Full text link
    We present a thermodynamic analysis of the driving forces for intercalation and conversion reactions in battery cathodes across a range of possible working ion, transition metal, and anion chemistries. Using this body of results, we analyze the importance of polymorph selection as well as chemical composition on the ability of a host cathode to support intercalation reactions. We find that the accessibility of high energy charged polymorphs in oxides generally leads to larger intercalation voltages favoring intercalation reactions, whereas sulfides and selenides tend to favor conversion reactions. Furthermore, we observe that Cr-containing cathodes favor intercalation more strongly than those with other transition metals. Finally, we conclude that two-electron reduction of transition metals (as is possible with the intercalation of a 2+2+ ion) will favor conversion reactions in the compositions we studied

    The electronic-structure origin of cation disorder in transition-metal oxides

    Get PDF
    Cation disorder is an important design criterion for technologically relevant transition-metal (TM) oxides, such as radiation-tolerant ceramics and Li-ion battery electrodes. In this letter, we use a combination of first-principles calculations, normal mode analysis, and band-structure arguments to pinpoint a specific electronic-structure effect that influences the stability of disordered phases. We find that the electronic configuration of a TM ion determines to which extent the structural energy is affected by site distortions. This mechanism explains the stability of disordered phases with large ionic radius differences and provides a concrete guideline for the discovery of novel disordered compositions.Comment: 12 pages, 9 figures, 4 table

    First-principles computation of the vibrational entropy of ordered and disordered Pd3V

    Get PDF
    Experimental as well as theoretical work indicates that the relative stability of the ordered and the disordered states of a compound may be significantly affected by their difference in vibrational entropy. The origin of this difference is usually attributed to the fact that disordering reduces the number of stiff bonds between different atomic species in favor of soft bonds between identical atomic species. The results of previous theoretical investigations, however, suggest that this simple mechanism is significantly modified as a result of local atomic relaxations. To gain further insight regarding the importance of relaxations, we employ first-principles calculations to investigate the magnitude of the vibrational entropy difference between the ordered and the disordered state of Pd3V. Our investigation reveals that bond stiffness changes due to relaxation entirely mask the large configurational dependence of vibrational entropy provided by bond stiffness differences. Our analysis also suggests a simple technique to estimate vibrational entropy based on the relationship between bond length and bond stiffness
    corecore