137 research outputs found

    The Power of Exercise-Induced T-wave Alternans to Predict Ventricular Arrhythmias in Patients with Implanted Cardiac Defibrillator

    Get PDF
    ABSTRACT The power of exercise-induced T-wave alternans (TWA) to predict the occurrence of ventricular arrhythmias was evaluated in 67 patients with an implanted cardiac defibrillator (ICD). During the 4-year follow-up, electrocardiographic (ECG) tracings were recorded in a bicycle ergometer test with increasing workload ranging from zero (NoWL) to the patient's maximal capacity (MaxWL). After the follow-up, patients were classified as either ICD_Cases (n = 29), if developed ventricular tachycardia/fibrillation, or ICD_Controls (n = 38). TWA was quantified using our heart-rate adaptive match filter. Compared to NoWL, MaxWL was characterized by faster heart rates and higher TWA in both ICD_Cases (12−18 µ V vs. 20−39 µ V; P < 0.05) and ICD_Controls (9-15 µ V vs. 20−32 µ V; P < 0.05 ). Still, TWA was able to discriminate the two ICD groups during NoWL (sensitivity = 59−83%, specificity = 53−84%) but not MaxWL (sensitivity = 55−69%, specificity = 39−74%). Thus, this retrospective observational case-control study suggests that TWA's predictive power for the occurrence of ventricular arrhythmias could increase at low heart rates

    Identification of Electrocardiographic Patterns Related to Mortality with COVID-19

    Get PDF
    COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems, due to the high number of cases and deaths. As COVID-19 patients may develop cardiac comorbidities that can be potentially fatal, electrocardiographic monitoring can be crucial. This work aims to identify electrocardiographic and vectorcardiographic patterns that may be related to mortality in COVID-19, with the application of the Advanced Repeated Structuring and Learning Procedure (AdvRS&LP). The procedure was applied to data from the "automatic computation of cardiovascular arrhythmic risk from electrocardiographic data of COVID-19 patients" (COVIDSQUARED) project to obtain neural networks (NNs) that, through 254 electrocardiographic and vectorcardiographic features, could discriminate between COVID-19 survivors and deaths. The NNs were validated by a five-fold cross-validation procedure and assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The features' contribution to the classification was evaluated through the Local-Interpretable Model-Agnostic Explanations (LIME) algorithm. The obtained NNs properly discriminated between COVID-19 survivors and deaths (AUC = 84.31 +/- 2.58% on hold-out testing datasets); the classification was mainly affected by the electrocardiographic-interval-related features, thus suggesting that changes in the duration of cardiac electrical activity might be related to mortality in COVID-19 cases

    Impact of QRS misclassifications on heart-rate-variability parameters (results from the CARLA cohort study)

    Get PDF
    Background: Heart rate variability (HRV), an important marker of autonomic nervous system activity, is usually determined from electrocardiogram (ECG) recordings corrected for extrasystoles and artifacts. Especially in large population-based studies, computer-based algorithms are used to determine RR intervals. The Modular ECG Analysis System MEANS is a widely used tool, especially in large studies. The aim of this study was therefore to evaluate MEANS for its ability to detect non-sinus ECG beats and artifacts and to compare HRV parameters in relation to ECG processing. Additionally, we analyzed how ECG processing affects the statistical association of HRV with cardiovascular disease (CVD) risk factors. Methods: 20-min ECGs from 1,674 subjects of the population-based CARLA study were available for HRV analysis. All ECGs were processed with the ECG computer program MEANS. A reference standard was established by experienced clinicians who visually inspected the MEANS-processed ECGs and reclassified beats if necessary. HRV parameters were calculated for 5-minute segments selected from the original 20-minute ECG. The effects of misclassified typified normal beats on i) HRV calculation and ii) the associations of CVD risk factors (sex, age, diabetes, myocardial infarction) with HRV were modeled using linear regression. Results: Compared to the reference standard, MEANS correctly classified 99% of all beats. The averaged sensitivity of MEANS across all ECGs to detect non-sinus beats was 76% [95% CI: 74.1;78.5], but for supraventricular extrasystoles detection sensitivity dropped to 38% [95% CI: 36.8;38.5]. Time-domain parameters were less affected by false sinus beats than frequency parameters. Compared to the reference standard, MEANS resulted in a higher SDNN on average (mean absolute difference 1.4ms [95% CI: 1.0;1.7], relative 4.9%). Other HRV parameters were also overestimated as well (between 6.5 and 29%). The effect estimates for the association of CVD risk factors with HRV did not differ between the editing methods. Conclusion: We have shown that the use of the automated MEANS algorithm may lead to an overestimation of HRV due to the misclassification of non-sinus beats, especially in frequency domain parameters. However, in population-based studies, this has no effect on the observed associations of HRV with risk factors, and therefore an automated ECG analyzing algorithm as MEANS can be recommended here for the determination of HRV parameters

    Impact of QRS misclassifications on heart-rate-variability parameters (results from the CARLA cohort study)

    Get PDF
    Background Heart rate variability (HRV), an important marker of autonomic nervous system activity, is usually determined from electrocardiogram (ECG) recordings corrected for extrasystoles and artifacts. Especially in large population-based studies, computer-based algorithms are used to determine RR intervals. The Modular ECG Analysis System MEANS is a widely used tool, especially in large studies. The aim of this study was therefore to evaluate MEANS for its ability to detect non-sinus ECG beats and artifacts and to compare HRV parameters in relation to ECG processing. Additionally, we analyzed how ECG processing affects the statistical association of HRV with cardiovascular disease (CVD) risk factors. Methods 20-min ECGs from 1,674 subjects of the population-based CARLA study were available for HRV analysis. All ECGs were processed with the ECG computer program MEANS. A reference standard was established by experienced clinicians who visually inspected the MEANS-processed ECGs and reclassified beats if necessary. HRV parameters were calculated for 5-minute segments selected from the original 20-minute ECG. The effects of misclassified typified normal beats on i) HRV calculation and ii) the associations of CVD risk factors (sex, age, diabetes, myocardial infarction) with HRV were modeled using linear regression. Results Compared to the reference standard, MEANS correctly classified 99% of all beats. The averaged sensitivity of MEANS across all ECGs to detect non-sinus beats was 76% [95% CI: 74.1;78.5], but for supraventricular extrasystoles detection sensitivity dropped to 38% [95% CI: 36.8;38.5]. Time-domain parameters were less affected by false sinus beats than frequency parameters. Compared to the reference standard, MEANS resulted in a higher SDNN on average (mean absolute difference 1.4ms [95% CI: 1.0;1.7], relative 4.9%). Other HRV parameters were also overestimated as well (between 6.5 and 29%). The effect estimates for the association of CVD risk factors with HRV did not differ between the editing methods.</p

    Impact of QRS misclassifications on heart-rate-variability parameters (results from the CARLA cohort study)

    Get PDF
    Background Heart rate variability (HRV), an important marker of autonomic nervous system activity, is usually determined from electrocardiogram (ECG) recordings corrected for extrasystoles and artifacts. Especially in large population-based studies, computer-based algorithms are used to determine RR intervals. The Modular ECG Analysis System MEANS is a widely used tool, especially in large studies. The aim of this study was therefore to evaluate MEANS for its ability to detect non-sinus ECG beats and artifacts and to compare HRV parameters in relation to ECG processing. Additionally, we analyzed how ECG processing affects the statistical association of HRV with cardiovascular disease (CVD) risk factors. Methods 20-min ECGs from 1,674 subjects of the population-based CARLA study were available for HRV analysis. All ECGs were processed with the ECG computer program MEANS. A reference standard was established by experienced clinicians who visually inspected the MEANS-processed ECGs and reclassified beats if necessary. HRV parameters were calculated for 5-minute segments selected from the original 20-minute ECG. The effects of misclassified typified normal beats on i) HRV calculation and ii) the associations of CVD risk factors (sex, age, diabetes, myocardial infarction) with HRV were modeled using linear regression. Results Compared to the reference standard, MEANS correctly classified 99% of all beats. The averaged sensitivity of MEANS across all ECGs to detect non-sinus beats was 76% [95% CI: 74.1;78.5], but for supraventricular extrasystoles detection sensitivity dropped to 38% [95% CI: 36.8;38.5]. Time-domain parameters were less affected by false sinus beats than frequency parameters. Compared to the reference standard, MEANS resulted in a higher SDNN on average (mean absolute difference 1.4ms [95% CI: 1.0;1.7], relative 4.9%). Other HRV parameters were also overestimated as well (between 6.5 and 29%). The effect estimates for the association of CVD risk factors with HRV did not differ between the editing methods.</p

    Normal Values of Corrected Heart-Rate Variability in 10-Second Electrocardiograms for All Ages

    Get PDF
    Purpose: Heart-rate variability (HRV) measured on standard 10-s electrocardiograms (ECGs) has been associated with increased risk of cardiac and all-cause mortality, but age- and sex-dependent normal values have not been established. Since heart rate strongly affects HRV, its effect should be taken into account. We determined a comprehensive set of normal values of heart-rate corrected HRV derived from 10-s ECGs for both children and adults, covering both sexes. Methods: Five population studies in the Netherlands (Pediatric Normal ECG Study, Leiden University Einthoven Science Project, Prevention of Renal and Vascular End-stage Disease Study, Utrecht Health Project, Rotterdam Study) provided 10-s, 12-lead ECGs. ECGs were stored digitally and analyzed by well-validated analysis software. We included cardiologically healthy participants, 42% being men. Their ages ranged from 11 days to 91 years. After quality control, 13,943 ECGs were available. Heart-rate correction formulas were derived using an exponential model. Two time-domain HRV markers were analyzed: the corrected standard deviation of the normal-to-normal RR intervals (SDNNc) and corrected root mean square of successive RR-interval differences (RMSSDc). Results: There was a considerable age effect. For both SDNNc and RMSSDc, the median and the lower limit of normal decreased steadily from birth until old age. The upper limit of normal decreased until the age of 60, but increased markedly after that age. Differences of the median were minimal between men and women. Conclusion: We report the first comprehensive set of normal values for heart-rate corrected 10-s HRV, which can be of value in clinical practice and in further research

    Cardiovascular disease, risk factors and heart rate variability in the elderly general population: Design and objectives of the CARdiovascular disease, Living and Ageing in Halle (CARLA) Study

    Get PDF
    BACKGROUND: The increasing burden of cardiovascular diseases (CVD) in the ageing population of industrialized nations requires an intensive search for means of reducing this epidemic. In order to improve prevention, detection, therapy and prognosis of cardiovascular diseases on the population level in Eastern Germany, it is necessary to examine reasons for the East-West gradient of CVD morbidity and mortality, potential causal mechanisms and prognostic factors in the elderly. Psychosocial and nutritional factors have previously been discussed as possible causes for the unexplained part of the East-West gradient. A reduced heart rate variability appears to be associated with cardiovascular disease as well as with psychosocial and other cardiovascular risk factors and decreases with age. Nevertheless, there is a lack of population-based data to examine the role of heart rate variability and its interaction with psychosocial and nutritional factors regarding the effect on cardiovascular disease in the ageing population. There also is a paucity of epidemiological data describing the health situation in Eastern Germany. Therefore, we conduct a population-based study to examine the distribution of CVD, heart rate variability and CVD risk factors and their associations in an elderly East German population. This paper describes the design and objectives of the CARLA Study. METHODS/DESIGN: For this study, a random sample of 45–80 year-old inhabitants of the city of Halle (Saale) in Eastern Germany was drawn from the population registry. By the end of the baseline examination (2002–2005), 1750 study participants will have been examined. A multi-step recruitment strategy aims at achieving a 70 % response rate. Detailed information is collected on own and family medical history, socioeconomic, psychosocial, behavioural and biomedical factors. Medical examinations include anthropometric measures, blood pressure of arm and ankle, a 10-second and a 20-minute electrocardiogram, a general physical examination, an echocardiogram, and laboratory analyses of venous blood samples. On 200 participants, a 24-hour electrocardiogram is recorded. A detailed system of quality control ensures high data quality. A follow-up examination is planned. DISCUSSION: This study will help to elucidate pathways to CVD involving autonomic dysfunction and lifestyle factors which might be responsible for the CVD epidemic in some populations
    corecore