371 research outputs found
"I hope that is comes across to the children that I am there as a human being": teachers' embodiment in the digital era
Abstract
Although teachers’ work is embodied, embodiment has not been widely discussed with reference to teachers’ work or teacher education. The digital era has changed teachers’ work in many ways, including their embodiment, as digital technologies are part of everyday life in schools. Hence, teachers’ embodiment in the digital era requires critical reflection. This study contributes to this reflection in three ways. First, we explore teachers’ embodiment in the digital era. Second, we argue that teachers feel the digitalisation in their bodies in a number of ways. Third, we suggest that teachers need to be supported in navigating their embodied work, starting with teacher education. In this study we intertwine thinking with data and theories of embodiment. The data consists of 25 narrative interviews with Finnish teachers, analysed by applying heuristic analysis.Abstract
Although teachers’ work is embodied, embodiment has not been widely discussed with reference to teachers’ work or teacher education. The digital era has changed teachers’ work in many ways, including their embodiment, as digital technologies are part of everyday life in schools. Hence, teachers’ embodiment in the digital era requires critical reflection. This study contributes to this reflection in three ways. First, we explore teachers’ embodiment in the digital era. Second, we argue that teachers feel the digitalisation in their bodies in a number of ways. Third, we suggest that teachers need to be supported in navigating their embodied work, starting with teacher education. In this study we intertwine thinking with data and theories of embodiment. The data consists of 25 narrative interviews with Finnish teachers, analysed by applying heuristic analysis
Language Maintenance in a Multilingual Family: Informal Heritage Language Lessons in Parent–Child Interactions
Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate
<p>Abstract</p> <p>Background</p> <p>Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways.</p> <p>Results</p> <p>In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings.</p> <p>Conclusion</p> <p>Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing.</p
The second-language vocabulary trajectories of Turkish immigrant children in Norway from ages five to ten: the role of preschool talk exposure, maternal education, and co-ethnic concentration in the neighborhood
Little research has explored how preschools can support children’s second-language (L2) vocabulary development. This study keenly followed the progress of twenty-six Turkish immigrant children growing up in Norway from preschool (age five) to fifth grade (age ten). Four different measures of preschool talk exposure (amount and diversity of teacher-led group talk and amount and diversity of peer talk), as well as the demographic variables of maternal education and co-ethnic concentration in the neighborhood, were employed to predict the children’s L2 vocabulary trajectories. The results of growth analyses revealed that maternal education was the only variable predicting children’s vocabulary growth during the elementary years. However, teacher-led talk, peer talk, and neighborhood predicted children’s L2 vocabulary skills at age five, and these differences were maintained up to age ten. This study underscores the importance of both preschool talk exposure (teacher-led talk and peer talk) and demographic factors on L2 learners’ vocabulary development
Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters
Antigene RNAs (agRNAs) are small RNA duplexes that target non-coding transcripts rather than mRNA and specifically suppress or activate gene expression in a sequence-dependent manner. For many applications in vivo, it is likely that agRNAs will require chemical modification. We have synthesized agRNAs that contain different classes of chemical modification and have tested their ability to modulate expression of the human progesterone receptor gene. We find that both silencing and activating agRNAs can retain activity after modification. Both guide and passenger strands can be modified and functional agRNAs can contain 2′F-RNA, 2′OMe-RNA, and locked nucleic acid substitutions, or combinations of multiple modifications. The mechanism of agRNA activity appears to be maintained after chemical modification: both native and modified agRNAs modulate recruitment of RNA polymerase II, have the same effect on promoter-derived antisense transcripts, and must be double-stranded. These data demonstrate that agRNA activity is compatible with a wide range of chemical modifications and may facilitate in vivo applications
Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome
Colorectal cancer (CRC) is one of the most common cancer types in developed countries. To identify molecular networks and biological processes that are deregulated in CRC compared to normal colonic mucosa, we applied Gene Set Enrichment Analysis to two independent transcriptome datasets, including a total of 137 CRC and ten normal colonic mucosa samples. Eighty-two gene sets as described by the Kyoto Encyclopedia of Genes and Genomes database had significantly altered gene expression in both datasets. These included networks associated with cell division, DNA maintenance, and metabolism. Among signaling pathways with known changes in key genes, the “Phosphatidylinositol signaling network”, comprising part of the PI3K pathway, was found deregulated. The downregulated genes in this pathway included several members of the Phospholipase C protein family, and the reduced expression of two of these, PLCD1 and PLCE1, were successfully validated in CRC biopsies (n = 70) and cell lines (n = 19) by quantitative analyses. The repression of both genes was found associated with KRAS mutations (P = 0.005 and 0.006, respectively), and we observed that microsatellite stable carcinomas with reduced PLCD1 expression more frequently had TP53 mutations (P = 0.002). Promoter methylation analyses of PLCD1 and PLCE1 performed in cell lines and tumor biopsies revealed that methylation of PLCD1 can contribute to reduced expression in 40% of the microsatellite instable carcinomas. In conclusion, we have identified significantly deregulated pathways in CRC, and validated repression of PLCD1 and PLCE1 expression. This illustrates that the GSEA approach may guide discovery of novel biomarkers in cancer
Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy
BACKGROUND: Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. METHODOLOGY/PRINCIPAL FINDINGS: Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. CONCLUSIONS: Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways
Sequence-non-specific effects of RNA interference triggers and microRNA regulators
RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells
MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma
YesMalignant pleural mesothelioma (MPM) is associated with an extremely poor prognosis, and most patients initially are or rapidly become unresponsive to platinum-based chemotherapy. MicroRNA-31 (miR-31) is encoded on a genomic fragile site, 9p21.3, which is reportedly lost in many MPM tumors. Based on previous findings in a variety of other cancers, we hypothesized that miR-31 alters chemosensitivity and that miR-31 reconstitution may influence sensitivity to chemotherapeutics in MPM. Reintroduction of miR-31 into miR-31 null NCI-H2452 cells significantly enhanced clonogenic resistance to cisplatin and carboplatin. Although miR-31 re-expression increased chemoresistance, paradoxically, a higher relative intracellular accumulation of platinum was detected. This was coupled to a significantly decreased intranuclear concentration of platinum. Linked with a downregulation of OCT1, a bipotential transcriptional regulator with multiple miR-31 target binding sites, we subsequently identified an indirect miR-31-mediated upregulation of ABCB9, a transporter associated with drug accumulation in lysosomes, and increased uptake of platinum to lysosomes. However, when overexpressed directly, ABCB9 promoted cellular chemosensitivity, suggesting that miR-31 promotes chemoresistance largely via an ABCB9-independent mechanism. Overall, our data suggest that miR-31 loss from MPM tumors promotes chemosensitivity and may be prognostically beneficial in the context of therapeutic sensitivity
- …
