3,615 research outputs found

    Temperature effects on dislocation core energies in silicon and germanium

    Full text link
    Temperature effects on the energetics of the 90-degree partial dislocation in silicon and germanium are investigated, using non-equilibrium methods to estimate free energies, coupled with Monte Carlo simulations. Atomic interactions are described by Tersoff and EDIP interatomic potentials. Our results indicate that the vibrational entropy has the effect of increasing the difference in free energy between the two possible reconstructions of the 90-degree partial, namely, the single-period and the double-period geometries. This effect further increases the energetic stability of the double-period reconstruction at high temperatures. The results also indicate that anharmonic effects may play an important role in determining the structural properties of these defects in the high-temperature regime.Comment: 8 pages in two-column physical-review format with six figure

    Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates

    Full text link
    Influence of the plate surfaces roughness in precise ellipsometry experiments is studied. The realistic case of a Gaussian laser beam crossing a uniaxial platelet is considered. Expression for the transmittance is determined using the first order perturbation theory. In this frame, it is shown that interference takes place between the specular transmitted beam and the scattered field. This effect is due to the angular distribution of the Gaussian beam and is of first order in the roughness over wavelength ratio. As an application, a numerical simulation of the effects of quartz roughness surfaces at normal incidence is provided. The interference term is found to be strongly connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21, pages 2697 - 270

    Atomic structure of dislocation kinks in silicon

    Full text link
    We investigate the physics of the core reconstruction and associated structural excitations (reconstruction defects and kinks) of dislocations in silicon, using a linear-scaling density-matrix technique. The two predominant dislocations (the 90-degree and 30-degree partials) are examined, focusing for the 90-degree case on the single-period core reconstruction. In both cases, we observe strongly reconstructed bonds at the dislocation cores, as suggested in previous studies. As a consequence, relatively low formation energies and high migration barriers are generally associated with reconstructed (dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction defect are found to be strongly bound in the 30-degree partial, while the opposite is true in the case of 90-degree partial, where such complexes are found to be only marginally stable at zero temperature with very low dissociation barriers. For the 30-degree partial, our calculated formation energies and migration barriers of kinks are seen to compare favorably with experiment. Our results for the kink energies on the 90-degree partial are consistent with a recently proposed alternative double-period structure for the core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di

    The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts

    Get PDF
    Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al

    Stopping of Charged Particles in a Magnetized Classical Plasma

    Get PDF
    The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented. The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained general expression for stopping power is analyzed for three cases: (i) the particle moves through a collisionless plasma in a strong homogeneous magnetic field; (ii) the fast particle moves through a magnetized collisionless plasma along the magnetic field; and (iii) the particle moves through a magnetized collisional plasma across a magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while moving across a magnetic field may be much higher than the loss in the case of motion through plasma without magnetic field.Comment: 14 pages, 3 figures, LaTe

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    Mucin Biopolymers As Broad-Spectrum Antiviral Agents

    Get PDF
    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.National Institutes of Health (U.S.) (grant P30-ES002109)National Institutes of Health (U.S.) (grant P50-GM068763)German Academic Exchange Service (Postdoctoral fellowship
    corecore