2,283 research outputs found
The physical origin of optical flares following GRB 110205A and the nature of the outflow
The optical emission of GRB 110205A is distinguished by two flares. In this
work we examine two possible scenarios for the optical afterglow emission. In
the first scenario, the first optical flare is the reverse shock emission of
the main outflow and the second one is powered by the prolonged activity of
central engine. We however find out that it is rather hard to interpret the
late ( day) afterglow data reasonably unless the GRB efficiency is very
high (). In the second scenario, the first optical flare is the low
energy prompt emission and the second one is the reverse shock of the initial
outflow. Within this scenario we can interpret the late afterglow emission
self-consistently. The reverse shock region may be weakly magnetized and the
decline of the second optical flare may be dominated by the high latitude
emission, for which strong polarization evolution accompanying the quick
decline is possible, as suggested by Fan et al. in 2008. Time-resolved
polarimetry by RINGO2-like polarimeters will test our prediction directly.Comment: Accepted for publication in RAA,8 pages, 2 figure
X-ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi
We present late-time observations by Swift and XMM-Newton of the tidal
disruption event (TDE) ASASSN-15oi that reveal that the source brightened in
the X-rays by a factor of one year after its discovery, while it faded
in the UV/optical by a factor of . The XMM-Newton observations
measure a soft X-ray blackbody component with eV,
corresponding to radiation from several gravitational radii of a central black hole. The last Swift epoch taken almost 600 days after
discovery shows that the X-ray source has faded back to its levels during the
UV/optical peak. The timescale of the X-ray brightening suggests that the X-ray
emission could be coming from delayed accretion through a newly forming debris
disk, and that the prompt UV/optical emission is from the prior circularization
of the disk through stream-stream collisions. The lack of spectral evolution
during the X-ray brightening disfavors ionization breakout of a TDE "veiled" by
obscuring material. This is the first time a TDE has been shown to have a
delayed peak in soft X-rays relative to the UV/optical peak, which may be the
first clear signature of the real-time assembly of a nascent accretion disk,
and provides strong evidence for the origin of the UV/optical emission from
circularization, as opposed to reprocessed emission of accretion radiation.Comment: Accepted for publication in ApJ Letter
The No-Reflow Phenomenon: Clinical and Angiographic Correlates
No-reflow occurring during PCI has been associated with poor outcomes. The objectives of this study were to evaluate the incidence of no-reflow as independent predictor of adverse events and to assess whether baseline pre-procedural treatment options may affect clinical outcomes. Data were derived from the ISACS-TC (NCT01218776) registry, a prospective survey of patients presenting with ACS over a 5-year period. Data were prospectively collected from 5997 patients undergoing PCI, identifying those with no-reflow, and analyzed their treatments and outcomes. No-reflow was defined as post-PCI TIMI flow grade 0-1, in the absence of post-procedural significant (≥25%) residual stenosis, abrupt vessel closure, dissection, perforation, thrombus of the original target lesion, or epicardial spasm. The outcome measure was in-hospital mortality. No-reflow was identified in 128 (2.1%) patients. On multivariate analysis, patients with no-reflow were more likely to be older (OR:1.20, 95%CI:1.01–1.44) and to be admitted with a diagnosis of ST-elevation myocardial infarction (OR:2.96, 95%CI:1.85–4.72). No-reflow was highly predictive of in-hospital mortality (17.2% vs. 4.2%, P<0.001) and remained a significant independent predictor of death after adjustment for demographic and clinical variables (OR:4.60,95%CI:2.61–8.09). Multivariable regression analysis was also performed to identify independent relationship between pre-procedural treatment regimens, angiographic characteristics and no-reflow phenomenon. Administration of pre-procedural unfractioned heparin, showed a strong inverse predictive value in terms of post-PCI TIMI flow and no-reflow phenomenon (OR: 0.65, 95%CI:0.43–0.99). Similarly, a 600-mg loading dose of clopidogrel showed a trend associated with a reduction in the likehood of no-reflow (OR:0.61,95%CI:0.37–1.00). Angiographic characteristics associated with no-reflow phenomenon were stenosis≥50% of the right coronary artery, presence of multivessel coronary disease and pre-procedural TIMI blood flow grade 0-1. In conclusion, no-reflow during PCI is a strong independent predictor of mortality. Pre-procedural administration of 600-mg loading dose of clopidogrel and/or unfractioned heparin is associated with reduced incidence of no-reflow
The Anticipated Supernova Associated with GRB090618
We use the cannonball model of gamma ray bursts (GRBs) and public data from
the first day of observations of GRB 090618 to predict its X-ray and optical
lightcurves until very late times, and, in particular, the emergence of a
photometric and spectroscopic signature of an SN akin to SN1998bw in its
optical afterglow with an anticipated peak brightness of magnitude 23 in the R
band around July 10, 2009, if extinction in the host galaxy can be neglected.Comment: 10 pages, 2 Figure
Observational implications of gamma-ray burst afterglow jet simulations and numerical light curve calculations
We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow
jets and the observational implications of numerical simulations of
relativistic jets in two dimensions. We confirm earlier numerical results that
sideways expansion of relativistic jets during the bulk of the afterglow
emission phase is logarithmic in time and find that this also applies to narrow
jets with half opening angle of 0.05 radians. As a result, afterglow jets
remain highly nonspherical until after they have become nonrelativistic.
Although sideways expansion steepens the afterglow light curve after the jet
break, the jet edges becoming visible dominates the jet break, which means that
the jet break is sensitive to the observer angle even for narrow jets. Failure
to take the observer angle into account can lead to an overestimation of the
jet energy by up to a factor 4. This weakens the challenge posed to the
magneter energy limit by extreme events such as GRB090926A. Late time radio
calorimetry based on a spherical nonrelativistic outflow model remains relevant
when the observer is approximately on-axis and where differences of a few in
flux level between the model and the simulation are acceptable. However, this
does not imply sphericity of the outflow and therefore does not translate to
high observer angles relevant to orphan afterglows. For more accurate
calorimetry and in order to model significant late time features such as the
rise of the counterjet, detailed jet simulations remain indispensable.Comment: 7 Figures. Replaced with accepted version. Significantly expanded,
including additional discussion of time scale
Discovery of the Very Red Near-Infrared and Optical Afterglow of the Short-Duration GRB 070724A
[Abridged] We report the discovery of the near-infrared and optical afterglow
of the short-duration gamma-ray burst GRB070724A. The afterglow is detected in
i,J,H,K observations starting 2.3 hr after the burst with K=19.59+/-0.16 mag
and i=23.79+/-0.07 mag, but is absent in images obtained 1.3 years later.
Fading is also detected in the K-band between 2.8 and 3.7 hr at a 4-sigma
significance level. The optical/near-IR spectral index, beta_{O,NIR}=-2, is
much redder than expected in the standard afterglow model, pointing to either
significant dust extinction, A_{V,host}~2 mag, or a non-afterglow origin for
the near-IR emission. The case for extinction is supported by a shallow optical
to X-ray spectral index, consistent with the definition for ``dark bursts'',
and a normal near-IR to X-ray spectral index. Moreover, a comparison to the
optical discovery magnitudes of all short GRBs with optical afterglows
indicates that the near-IR counterpart of GRB070724A is one of the brightest to
date, while its observed optical emission is one of the faintest. In the
context of a non-afterglow origin, the near-IR emission may be dominated by a
mini-supernova, leading to an estimated ejected mass of M~10^-4 Msun and a
radioactive energy release efficiency of f~0.005 (for v~0.3c). However, the
mini-SN model predicts a spectral peak in the UV rather than near-IR,
suggesting that this is either not the correct interpretation or that the
mini-SN models need to be revised. Finally, the afterglow coincides with a star
forming galaxy at z=0.457, previously identified as the host based on its
coincidence with the X-ray afterglow position (~2" radius). Our discovery of
the optical/near-IR afterglow makes this association secure.Comment: Submitted to ApJ; 10 pages, 5 figures, 1 tabl
Probing the distance and morphology of the Large Magellanic Cloud with RR Lyrae stars
We present a Bayesian analysis of the distances to 15,040 Large Magellanic
Cloud (LMC) RR Lyrae stars using - and -band light curves from the
Optical Gravitational Lensing Experiment, in combination with new -band
observations from the Dark Energy Camera. Our median individual RR Lyrae
distance statistical error is 1.89 kpc (fractional distance error of 3.76 per
cent). We present three-dimensional contour plots of the number density of LMC
RR Lyrae stars and measure a distance to the core LMC RR Lyrae centre of
,
equivalently . This finding is statistically consistent with and four
times more precise than the canonical value determined by a recent
meta-analysis of 233 separate LMC distance determinations. We also measure a
maximum tilt angle of at a position angle of
, and report highly precise constraints on the , , and RR
Lyrae period--magnitude relations. The full dataset of observed mean-flux
magnitudes, derived colour excess values, and fitted distances for
the 15,040 RR Lyrae stars produced through this work is made available through
the publication's associated online data.Comment: 7 pages, 8 figure
Evidence for High-Frequency QPOs with a 3:2 Frequency Ratio from a 5000 Solar Mass Black Hole
Following the discovery of 3:2 resonance quasi-periodic oscillations (QPOs)
in M82X-1 (Pasham et al. 2014), we have constructed power density spectra (PDS)
of all 15 (sufficiently long) {\it XMM-Newton} observations of the
ultraluminous X-ray source NGC1313X-1 ( 210
erg/sec). We detect a strong QPO at a frequency of 0.290.01 Hz in data
obtained on 2012 December 16. Subsequent searching of all the remaining
observations for a 3:2/2:3 frequency pair revealed a feature at 0.460.02
Hz on 2003 Dec 13 (frequency ratio of 1.590.09). The global significance
of the 0.29 Hz feature considering all frequencies between 0.1 and 4 Hz is
3.5 . The significance of the 0.460.02 Hz QPO is 3.5
for a search at 2/3 and 3/2 of 0.29 Hz. We also detect lower frequency QPOs
(32.92.6 and 79.71.2 mHz). All the QPOs are super-imposed on a
continuum consisting of flat-topped, band-limited noise, breaking into a
power-law at a frequency of 163 mHz and white noise at 0.1 Hz.
NGC1313X-1's PDS is analogous to stellar-mass black holes' (StMBHs) PDS in the
so-called steep power-law state, but with the respective frequencies (both QPOs
and break frequencies) scaled down by a factor of 1000. Using the
inverse mass-to-high-frequency QPO scaling of StMBHs, we estimate NGC1313X-1's
black hole mass to be 50001300 , consistent with an inference
from the scaling of the break frequency. However, the implied Eddington ratio,
L 0.030.01, is significantly lower compared to StMBHs in the
steep power-law state (L 0.2).Comment: Published in ApJ Letter
- …
