290 research outputs found
Temporal and developmental risk factors for sexual harassment and abuse in sport
Recent revelations of sexual misconduct by sports coaches have challenged long-held beliefs in the educational value of sport, yet there is very little knowledge about the dynamics of sexual exploitation in sport upon which to base improvements in the practice of sports coaching or teaching. Earlier inductive research by Brackenridge (1996, 1997a, 1997b) in Britain established a set of hypothesised risk factors for sexual abuse in sport which have subsequently been reinforced by the results of survey research on elite athletes in Canada (Kirby and Greaves 1996). However, risk analysis for sexual abuse in sport has not yet been framed within a temporal or developmental sequence, nor sufficiently differentiated between elite and recreational levels of sport, or between coach-initiated and peer-initiated abuse. This paper reports selected findings from a Dutch qualitative study (Cense 1997) of 14 athletes who have survived sexual abuse in sport. The aim of the study was to identify risk factors that influence sexual abuse and harassment and to analyse which risks might be diminished through a prevention policy implemented by sport organisations. The Dutch study reinforces the earlier risk factor analyses but extends them by putting forward a preliminary temporal model of risk in sport that integrates offender behaviour with athlete and situational factors. On the basis of this model, suggestions are made to assist early diagnosis and prevention of sexual harassment and abuse by authority figures in sport
Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components
Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera
Polarization-sensitive optical coherence tomography can be used to measure the birefringence of biological tissue such as the human retina. Previous measurements with a time-domain polarization-sensitive optical coherence tomography system revealed that the birefringence of the human retinal nerve fiber layer is not constant, but varies as a function of location around the optic nerve head. Here we present a spectral-domain polarization-sensitive optical coherence tomography system that uses a spectrometer configuration with a single line scan camera and a Wollaston prism in the detection arm. Since only one camera has to be synchronized with other components in the system, the design is simplified considerably. This system is 60 times faster than a time-domain polarization-sensitive optical coherence tomography system. Data was acquired using concentric circular scans around the optic nerve head of a young healthy volunteer and the acquisition time for 12 circular scans was reduced from 72 s to 1.2 s. The acquired data sets demonstrate variations in retinal thickness and double pass phase retardation per unit depth that were similar to data from the same volunteer taken with a time-domain polarization-sensitive system. The double pass phase retardation per unit depth of the retinal nerve fiber layer varied between 0.18 and 0.40 degrees/μm, equivalent to a birefringence of 2.2 · 1
Prevalence of sexual harassment among Norwegian female elite athletes in relation to sport type
Although it is often assumed that the prevalence of sexual harassment is different in different sports, this assumption has not been empirically tested. This study considers whether the experience of sexual harassment varies by sport. The female elite athletes (N = 553) in the study participated in 56 different sport disciplines. These were grouped as follows :1) team or individual sports; 2) extent to which clothing required for competition is revealing ; 3) gender structure (male-or female dominated membership statistics); and 4) gender culture (masculine, gender-neutral, or feminine). The data show that sexual harassment occurs in every sport group. Female elite athletes who participated in ‘masculine’ sports appear to experience more harassment than women in the other groups. We conclude that, when it comes to female athletes’ experiences of sexual harassment, sport type matters far less than sport participation per se
Ultra-high resolution Fourier domain optical coherence tomography for old master paintings
In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultrahigh resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1.2 μm in varnish or paint throughout a depth range of 1.5 mm has been developed. While Fourier domain OCT of similar resolution has been demonstrated recently, the sensitivity roll-off of some of these systems are still significant. In contrast, this current system achieved a sensitivity roll-off that is less than 2 dB over a 1.2 mm depth range with an incident power of ~1 mW on the sample. The high resolution and sensitivity of the system makes it convenient to image thin varnish and glaze layers with unprecedented contrast. The non-invasive 'virtual' cross-section images obtained with the system show the thin varnish layers with similar resolution in the depth direction but superior clarity in the layer interfaces when compared with conventional optical microscope images of actual paint sample cross-sections obtained microdestructively
High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing
Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm
Retinal layer thicknesses retrieved with different segmentation algorithms from optical coherence tomography scans acquired under different signal-to-noise ratio conditions
Glaucomatous damage can be quantified by measuring the thickness of different retinal layers. However, poor image quality may hamper the accuracy of the layer thickness measurement. We determined the effect of poor image quality (low signal-to-noise ratio) on the different layer thicknesses and compared different segmentation algorithms regarding their robustness against this degrading effect. For this purpose, we performed OCT measurements in the macular area of healthy subjects and degraded the image quality by employing neutral density filters. We also analysed OCT scans from glaucoma patients with different disease severity. The algorithms used were: The Canon HS-100's built-in algorithm, DOCTRAP, IOWA, and FWHM, an approach we developed. We showed that the four algorithms used were all susceptible to noise at a varying degree, depending on the retinal layer assessed, and the results between different algorithms were not interchangeable. The algorithms also differed in their ability to differentiate between young healthy eyes and older glaucoma eyes and failed to accurately separate different glaucoma stages from each other. (c) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
Sexual harassment and abuse in sport: The research context
This special issue of the Journal of Sexual Aggression draws on the contributions to a Symposium on ‘Sexual Harassment in Sport – Challenges for Sport Psychology in the New Millennium’, held at the Xth Congress of the International Society for Sport Psychology, Skiathos, Greece from May 28th to June 2nd 2001. The symposium, which was organised by the authors of this editorial, was intended to move forward the international research agenda on sexual harassment and abuse in sport and to examine professional practice issues for sport psychologists. It was clear from the attendance of over 60 delegates at that symposium that international interest in this subject is growing. Further evidence of this came from the attendance of 26 members states – from Azerbaijan to Sweden - at a Council of Europe seminar on The Protection of Children, Young People and Women in Sport, held in Helsinki in September 2001
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahighresolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7 × 3.2 mm images at 5 μm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo. © 2009 Optical Society of America
- …
