2,195 research outputs found

    Aspetti della procedura penale nel tardo impero romano

    Get PDF
    Nella nota sono esaminate alcune problematiche riguardanti la repressione criminale tardoantica con particolare riferimento al rapporto tra 'accusatio' ed 'inquisitio'

    La disciplina della condotta vessatoria delle parti nel processo romano

    Get PDF
    L'indagine mira ad approfondire alcuni significativi aspetti del processo privato romano, con specifico riferimento alla disciplina vessatoria delle parti. Dopo aver verificato il primo àmbito di applicazione di tale disciplina, sono stati presi in considerazione i diversi rimedi previsti contro i litiganti temerari, esaminando in particolare alcuni testi delle 'Institutiones' di Gai

    Homophily, Cultural Drift and the Co-Evolution of Cultural Groups

    Get PDF
    In studies of cultural differentiation, the joint mechanisms of homophily and influence have been able to explain how distinct cultural groups can form. While these mechanisms normally lead to cultural convergence, increased levels of heterogeneity can allow them to produce global diversity. However, this emergent cultural diversity has proven to be unstable in the face of "cultural drift"- small errors or innovations that allow cultures to change from within. We develop a model of cultural differentiation that combines the traditional mechanisms of homophily and influence with a third mechanism of 2network homophily", in which network structure co-evolves with cultural interaction. We show that if social ties are allowed to change with cultural influence, a complex relationship between heterogeneity and cultural diversity is revealed, in which increased heterogeneity can reduce cultural group formation while simultaneously increasing social connectedness. Our results show that in certain regions of the parameter space these co-evolutionary dynamics can lead to patterns of cultural diversity that are stable in the presence of cultural drift.Comment: (8 pages, 8 figures

    Trends Prediction Using Social Diffusion Models

    Get PDF
    The importance of the ability of predict trends in social media has been growing rapidly in the past few years with the growing dominance of social media in our everyday's life. Whereas many works focus on the detection of anomalies in networks, there exist little theoretical work on the prediction of the likelihood of anomalous network pattern to globally spread and become "trends". In this work we present an analytic model the social diffusion dynamics of spreading network patterns. Our proposed method is based on information diffusion models, and is capable of predicting future trends based on the analysis of past social interactions between the community's members. We present an analytic lower bound for the probability that emerging trends would successful spread through the network. We demonstrate our model using two comprehensive social datasets - the "Friends and Family" experiment that was held in MIT for over a year, where the complete activity of 140 users was analyzed, and a financial dataset containing the complete activities of over 1.5 million members of the "eToro" social trading community.Comment: 6 Pages + Appendi

    The spontaneous emergence of conventions: An experimental study of cultural evolution

    Get PDF
    How do shared conventions emerge in complex decentralized social systems? This question engages fields as diverse as linguistics, sociology, and cognitive science. Previous empirical attempts to solve this puzzle all presuppose that formal or informal institutions, such as incentives for global agreement, coordinated leadership, or aggregated information about the population, are needed to facilitate a solution. Evolutionary theories of social conventions, by contrast, hypothesize that such institutions are not necessary in order for social conventions to form. However, empirical tests of this hypothesis have been hindered by the difficulties of evaluating the real-time creation of new collective behaviors in large decentralized populations. Here, we present experimental results-replicated at several scales-that demonstrate the spontaneous creation of universally adopted social conventions and show how simple changes in a population's network structure can direct the dynamics of norm formation, driving human populations with no ambition for large scale coordination to rapidly evolve shared social conventions

    Generic Absorbing Transition in Coevolution Dynamics

    Get PDF
    We study a coevolution voter model on a network that evolves according to the state of the nodes. In a single update, a link between opposite-state nodes is rewired with probability pp, while with probability 1p1-p one of the nodes takes its neighbor's state. A mean-field approximation reveals an absorbing transition from an active to a frozen phase at a critical value pc=μ2μ1p_c=\frac{\mu-2}{\mu-1} that only depends on the average degree μ\mu of the network. The approach to the final state is characterized by a time scale that diverges at the critical point as τpcp1\tau \sim |p_c-p|^{-1}. We find that the active and frozen phases correspond to a connected and a fragmented network respectively. We show that the transition in finite-size systems can be seen as the sudden change in the trajectory of an equivalent random walk at the critical rewiring rate pcp_c, highlighting the fact that the mechanism behind the transition is a competition between the rates at which the network and the state of the nodes evolve.Comment: 5 pages, 4 figure

    Trends Prediction Using Social Diffusion Models

    Get PDF
    The importance of the ability to predict trends in social media has been growing rapidly in the past few years with the growing dominance of social media in our everyday’s life. Whereas many works focus on the detection of anomalies in networks, there exist little theoretical work on the prediction of the likelihood of anomalous network pattern to globally spread and become “trends”. In this work we present an analytic model for the social diffusion dynamics of spreading network patterns. Our proposed method is based on information diffusion models, and is capable of predicting future trends based on the analysis of past social interactions between the community’s members. We present an analytic lower bound for the probability that emerging trends would successfully spread through the network. We demonstrate our model using two comprehensive social datasets — the Friends and Family experiment that was held in MIT for over a year, where the complete activity of 140 users was analyzed, and a financial dataset containing the complete activities of over 1.5 million members of the eToro social trading community

    Cascade Dynamics of Multiplex Propagation

    Full text link
    Random links between otherwise distant nodes can greatly facilitate the propagation of disease or information, provided contagion can be transmitted by a single active node. However we show that when the propagation requires simultaneous exposure to multiple sources of activation, called multiplex propagation, the effect of random links is just the opposite: it makes the propagation more difficult to achieve. We calculate analytical and numerically critical points for a threshold model in several classes of complex networks, including an empirical social network.Comment: 4 pages, 5 figures, for similar work visit http://hsd.soc.cornell.edu and http://www.imedea.uib.es/physdep
    corecore