391 research outputs found
Sub-computable Boundedness Randomness
This paper defines a new notion of bounded computable randomness for certain
classes of sub-computable functions which lack a universal machine. In
particular, we define such versions of randomness for primitive recursive
functions and for PSPACE functions. These new notions are robust in that there
are equivalent formulations in terms of (1) Martin-L\"of tests, (2) Kolmogorov
complexity, and (3) martingales. We show these notions can be equivalently
defined with prefix-free Kolmogorov complexity. We prove that one direction of
van Lambalgen's theorem holds for relative computability, but the other
direction fails. We discuss statistical properties of these notions of
randomness
Effective Capacity and Randomness of Closed Sets
We investigate the connection between measure and capacity for the space of
nonempty closed subsets of {0,1}*. For any computable measure, a computable
capacity T may be defined by letting T(Q) be the measure of the family of
closed sets which have nonempty intersection with Q. We prove an effective
version of Choquet's capacity theorem by showing that every computable capacity
may be obtained from a computable measure in this way. We establish conditions
that characterize when the capacity of a random closed set equals zero or is
>0. We construct for certain measures an effectively closed set with positive
capacity and with Lebesgue measure zero
On Derivatives and Subpattern Orders of Countable Subshifts
We study the computational and structural aspects of countable
two-dimensional SFTs and other subshifts. Our main focus is on the topological
derivatives and subpattern posets of these objects, and our main results are
constructions of two-dimensional countable subshifts with interesting
properties. We present an SFT whose iterated derivatives are maximally complex
from the computational point of view, a sofic shift whose subpattern poset
contains an infinite descending chain, a family of SFTs whose finite subpattern
posets contain arbitrary finite posets, and a natural example of an SFT with
infinite Cantor-Bendixon rank.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
Algorithmic Randomness and Capacity of Closed Sets
We investigate the connection between measure, capacity and algorithmic
randomness for the space of closed sets. For any computable measure m, a
computable capacity T may be defined by letting T(Q) be the measure of the
family of closed sets K which have nonempty intersection with Q. We prove an
effective version of Choquet's capacity theorem by showing that every
computable capacity may be obtained from a computable measure in this way. We
establish conditions on the measure m that characterize when the capacity of an
m-random closed set equals zero. This includes new results in classical
probability theory as well as results for algorithmic randomness. For certain
computable measures, we construct effectively closed sets with positive
capacity and with Lebesgue measure zero. We show that for computable measures,
a real q is upper semi-computable if and only if there is an effectively closed
set with capacity q
Geriatrics principles in health care of older adults and the use of real-world data in aging-related research
Generically Computable Linear Orderings
We study notions of generic and coarse computability in the context of
computable structure theory. Our notions are stratified by the
hierarchy. We focus on linear orderings. We show that at the level
all linear orderings have both generically and coarsely computable copies. This
behavior changes abruptly at higher levels; we show that at the
level for any the set of linear
orderings with generically or coarsely computable copies is
-complete and therefore maximally complicated. This
development is new even in the general analysis of generic and coarse
computability of countable structures. In the process of proving these results
we introduce new tools for understanding generically and coarsely computable
structures. We are able to give a purely structural statement that is
equivalent to having a generically computable copy and show that every
relational structure with only finitely many relations has coarsely and
generically computable copies at the lowest level of the hierarchy.Comment: 35 page
- …
