85 research outputs found

    Priority actions for Fusarium head blight resistance in durum wheat: Insights from the wheat initiative

    Get PDF
    Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum). Bread wheat has ample genetic variation for resistance breeding, which can be readily exploited, while durum wheat is characterized by higher disease susceptibility and fewer valuable resistance sources. The Wheat Initiative - Expert Working Group on Durum Wheat Genomics and Breeding has promoted a scientific discussion to define the key actions that should be prioritized for achieving resistance in durum wheat comparable to that found in bread wheat. Here, a detailed state of the art and novel tools to improve FHB resistance in durum are presented, together with a perspective on the next steps forward. A meta-analysis grouping all quantitative trait loci (QTL) associated with FHB resistance in both bread and durum wheat has been conducted to identify hotspot regions that do not overlap with Rht alleles, which are known to negatively correlate with FHB resistance. A detailed list of QTL related to FHB resistance and deoxynivalenol contamination and durum lines carrying different sources of FHB resistance are provided as a strategic resource. QTL, closely linked markers and durum wheat lines carrying the useful alleles, can be selected to design an effective breeding program. Finally, we highlight the priority actions that should be implemented to achieve satisfactory resistance to FHB in durum wheat

    Effect of different doses of group-2 chromosomes on homoeologous pairing in intergeneric wheat hybrids

    Full text link
    While an extra dose of chromosome 2A of common wheat, previously reported to carry a pairing promoter on its short arm, did not increase pairing between homoeologous chromosomes in F1 hybrids between common wheat cv. Chinese Spring (CS) and Aegilops variabilis, two doses of chromosome 2D or 2B caused a significant increase in homoeologous pairing. Evidently, chromosomes 2D and 2B carry a pairing promoter(s). Studies of F1 hybrids between aneuploids of CS, either deficient for chromosome 2D or having it in an extra dose, and Ae. variabilis, Ae. longissima, and Secale cereale supported the finding that this chromosome carries a pairing promoter. Using ditelosomic lines, the promoter was found to be located on the short arm of 2D (2DS). It was deduced that the promoter of 2B is also located on the homoeologous short arm, i.e., on 2BS. Evidence was obtained that the long arm of 2D may carry a suppressor(s) of pairing. Thus, the short arm of 2A, 2D, and 2B carries a pairing promoter(s), while the long arm of 2D and possibly of 2A and 2B carry a minor suppressor(s). The promoters are more potent than the suppressors and the overall effect of group-2 chromosomes is pairing promotion.Key words: wheat, homoeologous pairing, pairing promoter, pairing suppressor, intergeneric hybrid, meiosis. </jats:p

    Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization

    Full text link
    The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S–5.8S–18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.Key words: fluorescence in situ hybridization, repetitive DNA, rye, Secale cereale, polymorphism. </jats:p
    corecore