163 research outputs found
Buried double CuO chains in YBaCuO uncovered by nano-ARPES
The electron dynamics in the CuO chains has been elusive in Y-Ba-Cu-O cuprate
systems by means of standard angle-resolved photoemission spectroscopy (ARPES);
cleaved sample exhibits areas terminated by both CuO-chain or BaO layers, and
the size of a typical beam results in ARPES signals that are superposed from
both terminations. Here, we employ spatially-resolved ARPES with submicrometric
beam (nano-ARPES) to reveal the surface-termination-dependent electronic
structures of the double CuO chains in YBaCuO. We present the first
observation of sharp metallic dispersions and Fermi surfaces of the double CuO
chains buried underneath the CuO-plane block on the BaO terminated surface.
While the observed Fermi surfaces of the CuO chains are highly one-dimensional,
the electrons in the CuO-chains do not undergo significant electron
correlations and no signature of a Tomonaga-Luttinger liquid nor a marginal
Fermi liquid is found. Our works represent an important experimental step
toward understanding of the charge dynamics and provides a starting basis for
modelling the high- superconductivity in YBCO cuprate systems.Comment: 10 pages, 5 figures including supplementary material (4 pages, 2
figures
Observation of band crossings protected by nonsymmorphic symmetry in the layered ternary telluride Ta3SiTe6
We have performed angle-resolved photoemission spectroscopy of layered
ternary telluride Ta3SiTe6 which is predicted to host nodal lines associated
with nonsymmorphic crystal symmetry. We found that the energy bands in the
valence-band region show Dirac-like dispersions which present a band degeneracy
at the R point of the bulk orthorhombic Brillouin zone. This band degeneracy
extends one-dimensionally along the whole SR high-symmetry line, forming the
nodal lines protected by the glide mirror symmetry of the crystal. We also
observed a small band splitting near EF which supports the existence of
hourglass-type dispersions predicted by the calculation. The present results
provide an excellent opportunity to investigate the interplay between exotic
nodal fermions and nonsymmorphic crystal symmetry.Comment: 6 pages, 4 figure
Population Inversion in Monolayer and Bilayer Graphene
The recent demonstration of saturable absorption and negative optical
conductivity in the Terahertz range in graphene has opened up new opportunities
for optoelectronic applications based on this and other low dimensional
materials. Recently, population inversion across the Dirac point has been
observed directly by time- and angle-resolved photoemission spectroscopy
(tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This
severely limits the applicability of single layer graphene to, for example,
Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived
population inversion in bilayer graphene. The effect is attributed to the small
band gap found in this compound. We propose a microscopic model for these
observations and speculate that an enhancement of both the pump photon energy
and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure
Probing the structure and dynamics of molecular clusters using rotational wavepackets
The chemical and physical properties of molecular clusters can heavily depend
on their size, which makes them very attractive for the design of new materials
with tailored properties. Deriving the structure and dynamics of clusters is
therefore of major interest in science. Weakly bound clusters can be studied
using conventional spectroscopic techniques, but the number of lines observed
is often too small for a comprehensive structural analysis. Impulsive alignment
generates rotational wavepackets, which provides simultaneous information on
structure and dynamics, as has been demonstrated successfully for isolated
molecules. Here, we apply this technique for the firsttime to clusters
comprising of a molecule and a single helium atom. By forcing the population of
high rotational levels in intense laser fields we demonstrate the generation of
rich rotational line spectra for this system, establishing the highly
delocalised structure and the coherence of rotational wavepacket propagation.
Our findings enable studies of clusters of different sizes and complexity as
well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure
Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene
In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES)
experiments the presence of the pump pulse adds a new level of complexity to
the photoemission process in comparison to conventional ARPES. This is
evidenced by pump-induced vacuum space-charge effects and surface
photovoltages, as well as multiple pump excitations due to internal reflections
in the sample-substrate system. These processes can severely affect a correct
interpretation of the data by masking the out-of-equilibrium electron dynamics
intrinsic to the sample. In this study, we show that such effects indeed
influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In
particular, we find a time- and laser fluence-dependent spectral shift and
broadening of the acquired spectra, and unambiguously show the presence of a
double pump excitation. The dynamics of these effects is slower than the
electron dynamics in the graphene sample, thereby permitting us to deconvolve
the signals in the time domain. Our results demonstrate that complex
pump-related processes should always be considered in the experimental setup
and data analysis.Comment: 9 pages, 4 figure
Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene
Bilayer graphene is a highly promising material for electronic and
optoelectronic applications since it is supporting massive Dirac fermions with
a tuneable band gap. However, no consistent picture of the gap's effect on the
optical and transport behavior has emerged so far, and it has been proposed
that the insulating nature of the gap could be compromised by unavoidable
structural defects, by topological in-gap states, or that the electronic
structure could be altogether changed by many-body effects. Here we directly
follow the excited carriers in bilayer graphene on a femtosecond time scale,
using ultrafast time- and angle-resolved photoemission. We find a behavior
consistent with a single-particle band gap. Compared to monolayer graphene, the
existence of this band gap leads to an increased carrier lifetime in the
minimum of the lowest conduction band. This is in sharp contrast to the second
sub-state of the conduction band, in which the excited electrons decay through
fast, phonon-assisted inter-band transitions.Comment: 5 pages, 4 figure
Phonon-pump XUV-photoemission-probe in graphene: evidence for non-adiabatic heating of Dirac carriers by lattice deformation
We modulate the atomic structure of bilayer graphene by driving its lattice
at resonance with the in-plane E1u lattice vibration at 6.3um. Using time- and
angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultra-violet
(XUV) pulses, we measure the response of the Dirac electrons near the K-point.
We observe that lattice modulation causes anomalous carrier dynamics, with the
Dirac electrons reaching lower peak temperatures and relaxing at faster rate
compared to when the excitation is applied away from the phonon resonance or in
monolayer samples. Frozen phonon calculations predict dramatic band structure
changes when the E1u vibration is driven, which we use to explain the anomalous
dynamics observed in the experiment.Comment: 16 pages, 8 figure
Spin and valley control of free carriers in single-layer WS2
Data are available from http://dx.doi.org/10.17630/a25b95c6-b9e8-4ecf-9559-bb09e58a7835The semiconducting single-layer transition metal dichalcogenides have been identified as ideal materials for accessing and manipulating spin- and valley-quantum numbers due to a set of favorable optical selection rules in these materials. Here, we apply time- and angle-resolved photoemission spectroscopy to directly probe optically excited free carriers in the electronic band structure of a high quality single layer (SL) of WS2 grown on Ag(111). We present a momentum resolved analysis of the optically generated free hole density around the valence band maximum of SL WS2 for linearly and circularly polarized optical excitations. We observe that the excited free holes are valley polarized within the upper spin-split branch of the valence band, which implies that the photon energy and polarization of the excitation permit selective excitations of free electron-hole pairs with a given spin and within a single valley.PostprintPeer reviewe
The pseudochiral Fermi surface of -RuI
In continuation of research into RuCl and RuBr as potential quantum
spin liquids, a phase with unique magnetic order characterised by long-range
quantum entanglement and fractionalised excitations, the compound RuI has
been recently synthesised. Here, we show RuI is a moderately correlated
metal with two bands crossing the Fermi level, implying the absence of any
quantum spin liquids phase. We find that the Fermi surface as measured or
calculated for a 2D () slice at any lacks
mirror symmetry, i.e. is pseudochiral. We link this phenomenon to the ABC
stacking in the R space group of -RuI, which is achiral
but lacks any mirror or glide symmetries. We further provide a formal framework
for understanding when such a pseudochiral electronic structure may be
observed
- …
