113 research outputs found
NOON states from cavity-enhanced down-conversion: High quality and super-resolution
Indistinguishable photons play a key role in quantum optical information
technologies. We characterize the output of an ultra-bright photon-pair source
using multi-particle tomography [R. B. A. Adamson et al., Phys. Rev. Lett. 98,
043601 (2007)] and separately identify coherent errors, decoherence, and
distinguishability. We demonstrate generation of high-quality indistinguishable
pairs and polarization NOON states with 99% fidelity to an ideal NOON state.
Using a NOON state we perform a super-resolving angular measurement with 90%
visibility.Comment: 4 Pages, 5 figure
Probing quantum-classical boundary with compression software
We experimentally demonstrate that it is impossible to simulate quantum
bipartite correlations with a deterministic universal Turing machine. Our
approach is based on the Normalized Information Distance (NID) that allows the
comparison of two pieces of data without detailed knowledge about their origin.
Using NID, we derive an inequality for output of two local deterministic
universal Turing machines with correlated inputs. This inequality is violated
by correlations generated by a maximally entangled polarization state of two
photons. The violation is shown using a freely available lossless compression
program. The presented technique may allow to complement the common statistical
interpretation of quantum physics by an algorithmic one.Comment: 7 pages, 6 figure
Symmetrical clock synchronization with time-correlated photon pairs
We demonstrate a point-to-point clock synchronization protocol based on
bidirectionally exchanging photons produced in spontaneous parametric down
conversion (SPDC). The technique exploits tight timing correlations between
photon pairs to achieve a precision of 51ps in 100s with count rates of order
200s. The protocol is distance independent, secure against symmetric
delay attacks and provides a natural complement to techniques based on Global
Navigation Satellite Systems (GNSS). The protocol works with mobile parties and
can be augmented to provide authentication of the timing signal via a Bell
inequality check.Comment: 5 pages, 5 figure
Experimental Test of Two-way Quantum Key Distribution in Presence of Controlled Noise
We describe the experimental test of a quantum key distribution performed
with a two-way protocol without using entanglement. An individual incoherent
eavesdropping is simulated and induces a variable amount of noise on the
communication channel. This allows a direct verification of the agreement
between theory and practice.Comment: 4 pages, 3 figure
Experimental many-pairs nonlocality
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs
Bright filter-free source of indistinguishable photon pairs
We demonstrate a high-brightness source of pairs of indistinguishable photons
based on a type-II phase-matched doubly-resonant optical parametric oscillator
operated far below threshold. The cavity-enhanced down-conversion output of a
PPKTP crystal is coupled into two single-mode fibers with a mode coupling
efficiency of 58%. The high degree of indistinguishability between the photons
of a pair is demonstrated by a Hong-Ou-Mandel interference visibility of higher
than 90% without any filtering at an instantaneous coincidence rate of 450 000
pairs/s per mW of pump power per nm of down-conversion bandwidth. For the
degenerate spectral mode with a linewidth of 7 MHz at 795 nm a rate of 70
pairs/(s mW MHz) is estimated, increasing the spectral brightness for
indistinguishable photons by two orders of magnitude compared to similar
previous sources.Comment: 7 pages, 3 figure
Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor
We demonstrate a tunable, narrow-band filter based on optical-pumping-induced
circular dichroism in rubidium vapor. The filter achieves a peak transmission
of 14.6%, a linewidth of 80 MHz, and an out-of-band extinction >35 dB. The
transmission peak can be tuned within the range of the Doppler linewidth of the
D1 line of atomic rubidium at 795 nm. While other atomic filters work at
frequencies far from absorption, the presented technique provides light
resonant with atomic media, useful for atom-photon interaction experiments. The
technique could readily be extended to other alkali atoms.Comment: 3 Pages, 4 figure
Entanglement-enhanced probing of a delicate material system
Quantum metrology uses entanglement and other quantum effects to improve the
sensitivity of demanding measurements. Probing of delicate systems demands high
sensitivity from limited probe energy and has motivated the field's key
benchmark-the standard quantum limit. Here we report the first
entanglement-enhanced measurement of a delicate material system. We
non-destructively probe an atomic spin ensemble by means of near-resonant
Faraday rotation, a measurement that is limited by probe-induced scattering in
quantum-memory and spin-squeezing applications. We use narrowband,
atom-resonant NOON states to beat the standard quantum limit of sensitivity by
more than five standard deviations, both on a per-photon and per-damage basis.
This demonstrates quantum enhancement with fully realistic loss and noise,
including variable-loss effects. The experiment opens the way to ultra-gentle
probing of single atoms, single molecules, quantum gases and living cells.Comment: 7 pages, 8 figures; Nature Photonics, advance online publication, 16
December 201
Urban-scale framework for assessing the resilience of buildings informed by a delphi expert consultation
The integration of resilience in disaster management is an emerging field as evidenced by an abundant literature. While resilience has been widely explored in several domains, its application demands the consideration of the entire ecosystem and its lifecycle, including disaster stressors and consequences, recovery process, and ultimately the prevention phase. In this paper, a qualitative characterization of resilience for buildings on an urban scale of analysis is achieved throughout the conduct of a Delphi-based expert consultation. The aim is to elicit and validate relevant criteria to characterize the resilience of our built-environment in face of geo-environmental hazards through two phases of consultation involving 23 and 21 respondents, respectively. The initial set of criteria consisted of 40 indicators, increasing to 48 at the end of the survey. The different criteria are clustered into seven categories, ranging from environmental to socio-organizational and technical. The results from both rounds of consultation were then analysed by means of statistical analysis with MATLAB and discussed for each category. The preliminary version of the framework for buildings’ resilience assessment on an urban scale is presented with a final set of 43 validated criteria
- …
