760 research outputs found

    From the Boltzmann equation to fluid mechanics on a manifold

    Full text link
    We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an arbitrary surface from the Boltzmann equation on the surface

    Direct simulation for a homogenous gas

    Full text link
    A probabilistic analysis of the direct simulation of a homogeneous gas is given. A hierarchy of equations similar to the BBGKY hierarchy for the reduced probability densities is derived. By invoking the molecular chaos assumption, an equation similar to the Boltzmann equation for the single particle probability density and the corresponding H-theorem is derived

    Towards a relativistic statistical theory

    Full text link
    In special relativity the mathematical expressions, defining physical observables as the momentum, the energy etc, emerge as one parameter (light speed) continuous deformations of the corresponding ones of the classical physics. Here, we show that the special relativity imposes a proper one parameter continuous deformation also to the expression of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits to construct a coherent and selfconsistent relativistic statistical theory [Phys. Rev. E {\bf 66}, 056125 (2002); Phys. Rev. E {\bf 72}, 036108 (2005)], preserving the main features (maximum entropy principle, thermodynamic stability, Lesche stability, continuity, symmetry, expansivity, decisivity, etc.) of the classical statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence.Comment: Physica A (2006). Proof correction

    Quantum Kinetic Evolution of Marginal Observables

    Full text link
    We develop a rigorous formalism for the description of the evolution of observables of quantum systems of particles in the mean-field scaling limit. The corresponding asymptotics of a solution of the initial-value problem of the dual quantum BBGKY hierarchy is constructed. Moreover, links of the evolution of marginal observables and the evolution of quantum states described in terms of a one-particle marginal density operator are established. Such approach gives the alternative description of the kinetic evolution of quantum many-particle systems to generally accepted approach on basis of kinetic equations.Comment: 18 page

    A new approach to quantitative propagation of chaos for drift, diffusion and jump processes

    Full text link
    This paper is devoted the the study of the mean field limit for many-particle systems undergoing jump, drift or diffusion processes, as well as combinations of them. The main results are quantitative estimates on the decay of fluctuations around the deterministic limit and of correlations between particles, as the number of particles goes to infinity. To this end we introduce a general functional framework which reduces this question to the one of proving a purely functional estimate on some abstract generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting nonlinear equation (stability estimates). Then we apply this method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean-Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process with (stochastic) thermal bath. To our knowledge, our approach yields the first such quantitative results for a combination of jump and diffusion processes.Comment: v2 (55 pages): many improvements on the presentation, v3: correction of a few typos, to appear In Probability Theory and Related Field

    Statistical kinetic treatment of relativistic binary collisions

    Full text link
    In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of particle pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g., uniform random pairing) yield qualitatively wrong results, including equilibrium distributions that differ from the theoretical J\"uttner distribution. A general procedure for relativistically consistent algorithms is provided, and verified with three-dimensional Monte Carlo simulations, thus opening the way to the numerical exploration of the statistical properties of collisional relativistic systems.Comment: Accepted for publication as a Rapid Communication in Phys. Rev.

    Continuum description of finite-size particles advected by external flows. The effect of collisions

    Get PDF
    The equation of the density field of an assembly of macroscopic particles advected by a hydrodynamic flow is derived from the microscopic description of the system. This equation allows to recognize the role and the relative importance of the different microscopic processes implicit in the model: the driving of the external flow, the inertia of the particles, and the collisions among them. The validity of the density description is confirmed by comparisons of numerical studies of the continuum equation with Direct Simulation Monte Carlo (DSMC) simulations of hard disks advected by a chaotic flow. We show that the collisions have two competing roles: a dispersing-like effect and a clustering effect (even for elastic collisions). An unexpected feature is also observed in the system: the presence of collisions can reverse the effect of inertia, so that grains with lower inertia are more clusterized.Comment: Final (strongly modified) version accepted in PRE; 6 pages, 3 figure

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page

    The Enskog Process

    Full text link
    The existence of a weak solution to a McKean-Vlasov type stochastic differential system corresponding to the Enskog equation of the kinetic theory of gases is established under natural conditions. The distribution of any solution to the system at each fixed time is shown to be unique. The existence of a probability density for the time-marginals of the velocity is verified in the case where the initial condition is Gaussian, and is shown to be the density of an invariant measure.Comment: 38 page
    corecore