4,765 research outputs found

    Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction

    Get PDF
    A Neutrino Factory producing an intense beam composed of nu_e(nubar_e) and nubar_mu(nu_mu) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, theta_13 and delta_CP . Using the `wrong-sign muon' signal to measure nu_e to nu_mu(nubar_e to nubar_mu) oscillations in a 50 ktonne Magnetised Iron Neutrino Detector (MIND) sensitivity to delta_CP could be maintained down to small values of theta_13. However, the detector efficiencies used in previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is re-assessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses

    Future neutrino oscillation facilities

    Get PDF
    The recent discovery that neutrinos have masses opens a wide new field of experimentation. Accelerator-made neutrinos are essential in this program. Ideas for future facilities include high intensity muon neutrino beams from pion decay (`SuperBeam'), electron neutrino beams from nuclei decays (`Beta Beam'), or muon and electron neutrino beams from muon decay (`Neutrino Factory'), each associated with one or several options for detector systems. Each option offers synergetic possibilities, e.g. some of the detectors can be used for proton decay searches, while the Neutrino Factory is a first step towards muon colliders. A summary of the perceived virtues and shortcomings of the various options, and a number of open questions are presented.Comment: Originally written for the CERN Strategy Grou

    Comment on "Theory of tailoring sonic devices: Diffraction dominates over refraction"

    Full text link
    Recently N. Garcia et al. (Phys. Rev. E 67, 046606 (2003)) theoretically studied several acoustic devices with dimensions on de order of several wavelenghts. The authors discussed on experimental results previously reported by several of us (F. Cervera et al., Phys. Rev. Lett. 88, 023902 (2002)). They concluded that diffraction and not refraction is the ominating mechanism that explain the focusing effects observed in those experiments. In this Comment we reexamined their calculations and discussed why some of their interpretations of our results are misleading.Comment: 2 pages, 2 figures, a comment on an articl

    Los límites del supranacionalismo

    Get PDF

    Status of MIND

    Get PDF
    The Magnetised Iron Neutrino Detector (MIND) has been identied as the ideal candidate for the de-tection of the golden \wrong sign muon " channel at a Neutrino Factory. However, previous analyses of the channel relied on a parameterisation of the detector performance which assumed pefect muon pattern recog-nition. For the rst time, a study of the muon reconstruction eciency involvoing full pattern recognition has been carried out. Using a simple pattern recognition algorithm it is shown that past results assuming perfect muon identication can already be reproduced after one simple cut
    corecore