27 research outputs found
Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent
Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of ≥90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease
Investigating the structure, function and regulation of Ruminococcus gnavus E1 alpha-galactosidases
Here we report the enzymatic characteristics and regulation of expression for two GH36 a- galactosidases. Agu 1 and Aga,'. li'0111 R. gnavus El. Bioinforrnatics analysis of their respective genetic environment showed a different organisation. Aga 1 having a simple organisation while Aga2 is organised as part nf an ()p~wn. They were heterologously expressed in Escherichia coli. puri tied to homogeneity and their biochemical properties and substrate preferences comparatively analysed. The growth pattern (If the strain in minimum media demonstrates a preference tor complex substratcs (melibiose and raffinose) that require the expression of the a-galactosid.rscs for their utilisation and assimilation. Keywords: a-galactosidase. Ruminococcus gnavus E I. characterisation. transglycosylation. regulation. metabolismEThOS - Electronic Theses Online ServiceGBUnited Kingdo
Investigating the structure, function and regulation of Ruminococcus gnavus E1 [alpha]-galactosidases
Ruminococcus gnavus E1 appartient au groupe des Firmicutes, l un des deux groupes dominants du microbiote intestinal humain. Les a-galactosidases sont des glycosides hydrolase (GH) actives sur des substrats contenant des galactoses liés en a. Elles sont très largement distribuées dans tous les domaines du vivant, bactéries, champignons, plantes et animaux, mais sont absentes du tractus digestif humain. Ces travaux portent sur les caractéristiques enzymatiques et la régulation de l expression de deux [alpha]-galactosidase, Aga1 et Aga2, de R. gnavus E1. L analyse bioinformatique de leur environnement génétique respectif indique une organisation simple pour Aga1 tandis qu Aga2 est organisée en opéron. Elles ont été exprimées en système hétérologue chez E. coli, purifiées et leurs propriétés biochimiques ainsi que leurs spécificités de substrat ont été analysées. Le profil de croissance de la souche indique une préférence pour des substrats complexes (raffinose et mélbiose) faisant intervenir les a-galactosidase pour leurs utilisations ainsi que leur assimilation.Ruminococcus gnavus E1 belongs to the Firmicutes, one of the two dominant groups in the human gut microbiota. a-galactosidases are glycoside hydrolases (GH) active on a-galactoside containing substrates. They are widely distributed through all the domains of life: bacteria, fungi, plants, and animals, but are absent from the human gastro-intestinal tract.Here we report the enzymatic characteristics and regulation of expression for two GH36 [alpha]-galactosidases, Aga1 and Aga2, from R. gnavus E1. Bioinformatics analysis of their respective genetic environment showed a different organisation, Aga1 having a simple organisation while Aga2 is organised as part of an operon. They were heterologously expressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. The growth pattern of the strain in minimum media demonstrates a preference for complex substrates (melibiose and raffinose) that require the expression of the a-galactosidases for their utilisation and assimilationAIX-MARSEILLE3-Bib. élec. (130559903) / SudocSudocFranceF
Molecular determinants of substrate and inhibitor specificities of the Penicillium griseofulvum family 11 xylanases.
Penicillium griseofulvum possesses two endo-(1,4)-beta-xylanase genes, PgXynA and PgXynB, belonging to family 11 glycoside hydrolases. The enzymes share 69% identity, a similar hydrolysis profile i.e. the predominant production of xylobiose and xylotriose as end products from wheat arabinoxylan and a specificity region of six potential xylose subsites, but differ in terms of catalytic efficiency which can be explained by subtle structural differences in the positioning of xylohexaose in the PgXynB model. Site-directed mutagenesis of the "thumb" region revealed structural basis of PgXynB substrate and inhibitor specificities. We produced variants displaying increased catalytic efficiency towards wheat arabinoxylan and xylo-oligosaccharides and identified specific determinants in PgXynB "thumb" region responsible for resistance to the wheat xylanase inhibitor XIP-I. Based on kinetic analysis and homology modeling, we suggested that Pro130(PgXynB), Lys131(PgXynB) and Lys132(PgXynB) hamper flexibility of the loop forming the "thumb" and interfere by steric hindrance with the inhibitor
GALACTOSIDASE DOMAIN OF ALPHA-GALACTOSIDASE-SUCROSE KINASE, AGASK, in complex with galactose
Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont
Ruminococcus gnavus belongs to the 57 most common species present in 90% of individuals. Previously, we identified an α-galactosidase (Aga1) belonging to glycoside hydrolase (GH) family 36 from R. gnavus E1 (M. Aguilera, H. Rakotoarivonina, A. Brutus, T. Giardina, G. Simon, and M. Fons, Res. Microbiol. 163:14-21, 2012). Here, we identified a novel GH36-encoding gene from the same strain and termed it aga2. Although aga1 showed a very simple genetic organization, aga2 is part of an operon of unique structure, including genes putatively encoding a regulator, a GH13, two phosphotransferase system (PTS) sequences, and a GH32, probably involved in extracellular and intracellular sucrose assimilation. The 727-amino-acid (aa) deduced Aga2 protein shares approximately 45% identity with Aga1. Both Aga1 and Aga2 expressed in Escherichia coli showed strict specificity for α-linked galactose. Both enzymes were active on natural substrates such as melibiose, raffinose, and stachyose. Aga1 and Aga2 occurred as homotetramers in solution, as shown by analytical ultracentrifugation. Modeling of Aga1 and Aga2 identified key amino acids which may be involved in substrate specificity and stabilization of the α-linked galactoside substrates within the active site. Furthermore, Aga1 and Aga2 were both able to perform transglycosylation reactions with α-(1,6) regioselectivity, leading to the formation of product structures up to [Hex](12) and [Hex](8), respectively. We suggest that Aga1 and Aga2 play essential roles in the metabolism of dietary oligosaccharides and could be used for the design of galacto-oligosaccharide (GOS) prebiotics, known to selectively modulate the beneficial gut microbiota
