40 research outputs found
Perception of Time-Discrete Haptic Feedback on the Waist is Invariant with Gait Events
The effectiveness of haptic feedback devices highly depends on the perception of tactile stimuli, which differs across body parts and can be affected by movement. In this study, a novel wearable sensory feedback apparatus made of a pair of pressure-sensitive insoles and a belt equipped with vibrotactile units is presented; the device provides time-discrete vibrations around the waist, synchronized with biomechanically-relevant gait events during walking. Experiments with fifteen healthy volunteers were carried out to investigate users' tactile perception on the waist. Stimuli of different intensities were provided at twelve locations, each time synchronously with one pre-defined gait event (i.e. heel strike, flat foot or toe off), following a pseudo-random stimulation sequence. Reaction time, detection rate and localization accuracy were analyzed as functions of the stimulation level and site and the effect of gait events on perception was investigated. Results revealed that above-threshold stimuli (i.e. vibrations characterized by acceleration amplitudes of 1.92g and 2.13g and frequencies of 100 Hz and 150 Hz, respectively) can be effectively perceived in all the sites and successfully localized when the intertactor spacing is set to 10 cm. Moreover, it was found that perception of time-discrete vibrations was not affected by phase-related gating mechanisms, suggesting that the waist could be considered as a preferred body region for delivering haptic feedback during walking
Assessment of intuitiveness and comfort of wearable haptic feedback strategies for assisting level and stair walking
Nowadays, lower-limb prostheses are reaching real-world usability especially on ground-level walking. However, some key tasks such as stair walking are still quite demanding. Providing haptic feedback about the foot placement on the steps might reduce the cognitive load of the task, compensating for increased dependency on vision and lessen the risk of falling. Experiments on intact subjects can be useful to define the feedback strategies prior to clinical trials, but effective methods to assess the efficacy of the strategies are few and usually rely on the emulation of the disability condition. The present study reports on the design and testing of a wearable haptic feedback system in a protocol involving intact subjects to assess candidate strategies to be adopted in clinical trials. The system integrated a sensorized insole wirelessly connected to a textile waist belt equipped with three vibrating motors. Three stimulation strategies for mapping the insole pressure data to vibrotactile feedback were implemented and compared in terms of intuitiveness and comfort perceived during level and stair walking. The strategies were ranked using a relative rating approach, which highlighted the differences between them and suggested guidelines for their improvement. The feedback evaluation procedure proposed could facilitate the selection and improvement of haptic feedback strategies prior to clinical testing
Seedless hydrothermal growth of ZnO nanorods as a promising route for flexible tactile sensors
Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2–4 N and vibrations over frequencies in the range of 20–800 Hz
Low-voltage wearable tactile display with thermo-pneumatic actuation
Tactile displays often face challenges like high power consumption, bulky control systems, and limited portability, hindering their application in wearable technologies. This work presents a novel thermo-pneumatic tactile display that operates via localized heating of a small air volume, enabling low-voltage operation with standard batteries. Its fully portable design integrates control electronics into a wearable bracelet with Bluetooth activation, enhancing practicality. Mechanical tests demonstrated the device’s ability to generate forces exceeding 30 mN and displacements of tens of microns using pulsed signals with modulable durations and frequencies. User tests with voluntary participants confirmed its effectiveness as a tactile display, achieving 83% accuracy in recognizing Braille patterns. By addressing key limitations of traditional systems, this approach offers a promising solution for compact, low-power wearable tactile interfaces
A Simple Approach for Flexible and Stretchable Anti-icing Lubricant-Infused Tape
Unwanted icing has major safety and economic repercussions on human activities, affecting means of transportation, infrastructures, and consumer goods. Compared to the common deicing methods in use today, intrinsically icephobic surfaces can decrease ice accumulation and formation without any active intervention from humans or machines. However, such systems often require complex fabrication methods and can be costly, which limits their applicability. In this study, we report the preparation and characterization of several slippery lubricant-infused porous surfaces (SLIPSs) realized by impregnating with silicone oil a candle soot layer deposited on double-sided adhesive tape. Despite the use of common household items, these SLIPSs showed anti-icing performance comparable to other systems described in the literature (ice adhesion < 20 kPa) and a good resistance to mechanical and environmental damages in laboratory conditions. The use of a flexible and functional substrate as tape allowed these devices to be stretchable without suffering significant degradation and highlights how these systems can be easily prepared and applied anywhere needed. In addition, the possibility of deforming the substrate can “allow” the application of SLIPS technology in mechanical ice removal methodologies, drastically incrementing their performance
Hardware and Software Solutions for Energy-Efficient Computing in Scientific Programming
none4noEnergy consumption is one of the major issues in today's computer science, and an increasing number of scientific communities are interested in evaluating the tradeoff between time-to-solution and energy-to-solution. Despite, in the last two decades, computing which revolved around centralized computing infrastructures, such as supercomputing and data centers, the wide adoption of the Internet of Things (IoT) paradigm is currently inverting this trend due to the huge amount of data it generates, pushing computing power back to places where the data are generated - the so-called fog/edge computing. This shift towards a decentralized model requires an equivalent change in the software engineering paradigms, development environments, hardware tools, languages, and computation models for scientific programming because the local computational capabilities are typically limited and require a careful evaluation of power consumption. This paper aims to present how these concepts can be actually implemented in scientific software by presenting the state of the art of powerful, less power-hungry processors from one side and energy-aware tools and techniques from the other one.noneD'Agostino D.; Merelli I.; Aldinucci M.; Cesini D.D'Agostino, D.; Merelli, I.; Aldinucci, M.; Cesini, D
Combining Edge and Cloud computing for low-power, cost-effective metagenomics analysis
none5noMetagenomic studies are becoming increasingly widespread, yielding important insights into microbial communities covering diverse environments from terrestrial to aquatic ecosystems. This also because genome sequencing is likely to become a routinely and ubiquitous analysis in a near future thanks to a new generation of portable devices, such as the Oxford Nanopore MinION. The main issue is however represented by the huge amount of data produced by these devices, whose management is actually challenging considering the resources required for an efficient data transfer and processing. In this paper we discuss these aspects, and in particular how it is possible to couple Edge and Cloud computing in order to manage the full analysis pipeline. In general, a proper scheduling of the computational services between the data center and smart devices equipped with low-power processors represents an effective solution.noneD'Agostino D.; Morganti L.; Corni E.; Cesini D.; Merelli I.D'Agostino, D.; Morganti, L.; Corni, E.; Cesini, D.; Merelli, I
Parallel Computing in Deep Learning: Bioinformatics Case Studiesa
In the last two decades deep learning has attracted a lot of attention internationally, solving problems in different application domains and achieving results beyond expectations. For example it has been applied in bioinformatics, game playing, imaging processing, object detection, robotic and drug discovery. One of the main reasons for the incremented use of deep learning algorithms is the need to implement approaches for the analysis of the large amount of data produces in every field, bringing researchers to dedicate their work to deep learning development. One of the main topics discussed up today is the possibility to run the training of deep models in a parallel fashion, so to reduce the time otherwise needed to find the hyperparameters and to make the achievement of the result faster
Hydrothermally Grown ZnO Nanorods as Promising Materials for Low Cost Electronic Skin
ZnO nanorods (NRs) are nanomaterials with a wide range of applications (photocatalysis, optoelectronics, catalysis, etc). One peculiar property of ZnO NRs is their piezoelectricity, which opens up a wealth of possibilities in the field of pressure sensors. In fact, thanks also to the recent availability of low cost hydrothermal growth, it is already possible to fabricate flexible, large area, self-powered, distributed pressure sensors, with a high potential for use in robotics and prosthetics as “electronic skins”. This review focuses hence on ZnO NRs grown by the hydrothermal method, with an eye on the relationship between the reaction parameters and the resulting NRs morphology, and on their specific application in pressure sensing in terms of device design and performance
