24 research outputs found
BOLD and EEG signal variability at rest differently relate to aging in the human brain
Variability of neural activity is regarded as a crucial feature of healthy brain function, and several neuroimaging approaches have been employed to assess it noninvasively. Studies on the variability of both evoked brain response and spontaneous brain signals have shown remarkable changes with aging but it is unclear if the different measures of brain signal variability – identified with either hemodynamic or electrophysiological methods – reflect the same underlying physiology. In this study, we aimed to explore age differences of spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in healthy younger (25 ± 3 years, N = 135) and older (67 ± 4 years, N = 54) adults. Consistent with the previous studies, we found lower blood oxygenation level dependent (BOLD) variability in the older subjects as well as less signal variability in the amplitude of low-frequency oscillations (1–12 Hz), measured in source space. These age-related reductions were mostly observed in the areas that overlap with the default mode network. Moreover, age-related increases of variability in the amplitude of beta-band frequency EEG oscillations (15–25 Hz) were seen predominantly in temporal brain regions. There were significant sex differences in EEG signal variability in various brain regions while no significant sex differences were observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed no significant associations between EEG- and fMRI-based variability measures. In summary, we show that both BOLD and EEG signal variability reflect aging-related processes but are likely to be dominated by different physiological origins, which relate differentially to age and sex
Balancing excitation and inhibition: The role of neural network dynamics in working memory gating
In the complex landscape of daily life, we continuously balance between maintaining focus despite distractions and flexibly updating focus when needed—a cognitive process governed by a mechanism known as working memory gating. While much research has focused on the neural locus of this mechanism, less is known about the underlying neural dynamics. Here we probe the role of network excitation/inhibition (E/I) dynamics in working memory gating. Utilizing resting-state electroencephalography, we extract two markers of network E/I dynamics: resting-state long-range temporal correlations (LRTCs)—indicative of “critically” balanced E/I dynamics, and the slope of the power spectral density (PSD)—indicative of E/I ratio, and relate them to performance on a working memory gating task, specifically probing distractor-resistant maintenance and flexible updating. Based on previous studies linking stronger LRTCs to enhanced adaptive cognition, we initially expected to observe a similar relation. We find the opposite pattern, however: stronger LRTCs (indicating a more “critical” E/I balance) predicted poorer performance in maintenance-related working memory processes. This challenges the assumption that “near-critical” system dynamics are generally beneficial for cognitive function. Additionally, a flatter PSD slope (indicating a higher E/I ratio) was associated with better maintenance-related performance, particularly in individuals with higher levels of blood phenylalanine and tyrosine (indicating greater central dopamine availability). Notably, both network measures affected performance in all but the updating condition, suggesting a nuanced role of cortical E/I dynamics in overarching maintenance-related working memory processes, distinct from the gating mechanism as such. Our results highlight the complex interplay of network dynamics and neurochemical environments in cognitive function, suggesting implications for targeted interventions in cognitive disorders
One‐week escitalopram intake alters the excitation–inhibition balance in the healthy female brain
Neural health relies on cortical excitation-inhibition balance (EIB). Previous research suggests a link between increased cortical excitation and neuroplasticity induced by selective serotonin reuptake inhibitors (SSRIs). Whether there are modulations of EIB following SSRI-administration in the healthy human brain, however, remains unclear. Thus, in a randomized double-blind study, we administered a clinically relevant dose of 20 mg escitalopram for 7 days (time when steady state is achieved) in 59 healthy women (28 escitalopram, 31 placebo) on oral contraceptives. We acquired resting-state electroencephalography data at baseline, after a single dose, and at steady state. We assessed 1/f slope of the power spectrum as a marker of EIB, compared individual trajectories of 1/f slope changes contrasting single dose and 1-week drug intake, and tested the relationship of escitalopram plasma levels and cortical excitatory and inhibitory balance shifts. Escitalopram-intake was associated with decreased 1/f slope, indicating an EIB shift in favor of excitation. Furthermore, 1/f slope at baseline and after a single dose of escitalopram was associated with 1/f slope at steady state. Higher plasma escitalopram levels at a single dose were associated with better maintenance of these EIB changes throughout the drug administration week. These findings demonstrate the potential for 1/f slope to predict individual cortical responsivity to SSRIs and widen the lens through which we map the human brain by testing an interventional psychopharmacological design in a clearly defined endocrinological state
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and LRTC. Finally, higher age was associated with elevated alpha power via total WMH volume. We suggest that an elevated alpha power is a consequence of WMH affecting a spatial organization of alpha sources
Attenuation of the heartbeat-evoked potential in patients with atrial fibrillation
Background The heartbeat-evoked potential (HEP) is a brain response to each heartbeat, which is thought to reflect cardiac signaling to central autonomic areas and suggested to be a marker of internal body awareness (e.g., interoception). Objectives Because cardiac communication with central autonomic circuits has been shown to be impaired in patients with atrial fibrillation (AF), we hypothesized that HEPs are attenuated in these patients. Methods By simultaneous electroencephalography and electrocardiography recordings, HEP was investigated in 56 individuals with persistent AF and 56 control subjects matched for age, sex, and body mass index. Results HEP in control subjects was characterized by right frontotemporal negativity peaking around 300 to 550 ms after the R-peak, consistent with previous studies. In comparison with control subjects, HEP amplitudes were attenuated, and HEP amplitude differences remained significant when matching the samples for heart frequency, stroke volume (assessed by echocardiography), systolic blood pressure, and the amplitude of the T-wave. Effect sizes for the group differences were medium to large (Cohen’s d between 0.6 and 0.9). EEG source analysis on HEP amplitude differences pointed to a neural representation within the right insular cortex, an area known as a hub for central autonomic control. Conclusions The heartbeat-evoked potential is reduced in AF, particularly in the right insula. We speculate that the attenuated HEP in AF may be a marker of impaired heart–brain interactions. Attenuated interoception might furthermore underlie the frequent occurrence of silent AF
EEGManyPipelines: A large-scale, grassroots multi-analyst study of electroencephalography analysis practices in the wild
The ongoing reproducibility crisis in psychology and cognitive neuroscience has sparked increasing calls to re-evaluate and reshape scientific culture and practices. Heeding those calls, we have recently launched the EEGManyPipelines project as a means to assess the robustness of EEG research in naturalistic conditions and experiment with an alternative model of conducting scientific research. One hundred sixty-eight analyst teams, encompassing 396 individual researchers from 37 countries, independently analyzed the same unpublished, representative EEG data set to test the same set of predefined hypotheses and then provided their analysis pipelines and reported outcomes. Here, we lay out how large-scale scientific projects can be set up in a grassroots, community-driven manner without a central organizing laboratory. We explain our recruitment strategy, our guidance for analysts, the eventual outputs of this project, and how it might have a lasting impact on the field
Alterations in rhythmic and non‐rhythmic resting‐state EEG activity and their link to cognition in older age
While many structural and biochemical changes in the brain have previously been associated with older age, findings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors determining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic and non-rhythmic parameters. We used a large dataset (N = 1703, mean age 70) to comprehensively investigate age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and their individual contributions to cognitive performance. While we found strong evidence for an individual alpha peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interference resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional role in information sampling. Critically, we did not detect a significant relationship between alpha power and age when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the comprehensive assessment of association between age, neuronal activity, and cognitive performance
