813 research outputs found
Modeling and forecasting car ownership based on socio-economic and demographic indicators in Turkey
Since car ownership is an important determinant to analyze car travel behavior especially in developing countries, this paper deals with modeling and forecasting car ownership in Turkey based on socio-economic and demographic indicators such as Gross Domestic Product(GDP) per capita, Gasoline Price (GP), car price and number of employees by using multiple nonlinear regression analysis. Although most of
the studies on this subject prefer using annual data, we use monthly data for the analysis of car ownership since all explanatory variables and exchange rates used for the modeling are unstable and vary even in a short period in developing countries such as Turkey. Thus, it may be
possible to reflect the effects of socio-economic and demographic indicators on car ownership more properly. During the modeling process, exponential and polynomial nonlinear regression models are set up and then tested to investigate their applicability for car ownership
forecasting. Based on results of the Kolmogorov-Smirnov test, the polynomial models has been selected to forecast car ownership for the year 2035. In order to reveal the possible different trends of the independent variables in future, car ownership is forecasted along the scenarios
which are related to the GDP per capita and GP. Results show that Turkey’s car ownership may vary between 230 and 325 per thousand capita in 2035 depending on economic achievements, global oil prices and national taxation policies. The lowest and the highest values of the car ownership may provide insight to car producers and transport planners in Turkey. Another significant result presented in this study is that
car ownership rate will be substantially lower in Turkey than that in the European Union countries despite it has an increasing trend in the past two decades
Glycosaminoglycan mimetric peptide nanofibers promote mineralization by osteogenic cells
Cataloged from PDF version of article.Bone tissue regeneration is accomplished by concerted regulation of protein-based extracellular matrix components, glycosaminoglycans (GAGs) and inductive growth factors. GAGs constitute a significant portion of the extracellular matrix and have a significant impact on regulating cellular behavior, either directly or through encapsulation and presentation of growth factors to the cells. In this study we utilized a supramolecular peptide nanofiber system that can emulate both the nanofibrous architecture of collagenous extracellular matrix and the major chemical composition found on GAGs. GAGs and collagen mimetic peptide nanofibers were designed and synthesized with sulfonate and carboxylate groups on the peptide scaffold. The GAG mimetic peptide nanofibers interact with bone morphogenetic protein-2 (BMP-2), which is a critical growth factor for osteogenic activity. The GAG mimicking ability of the peptide nanofibers and their interaction with BMP-2 promoted osteogenic activity and mineralization by osteoblastic cells. Alkaline phosphatase activity, Alizarin red staining and energy dispersive X-ray analysis spectroscopy indicated the efficacy of the peptide nanofibers in inducing mineralization. The multifunctional and bioactive microenvironment presented here provides osteoblastic cells with osteogenic stimuli similar to those observed in native bone tissue
Bone-Like Mineral Nucleating Peptide Nanofibers Induce Differentiation of Human Mesenchymal Stem Cells into Mature Osteoblasts
Cataloged from PDF version of article.A bone implant should integrate to the tissue through a bone-like mineralized interface, which requires increased osteoblast activity at the implant-tissue boundary. Modification of the implant surface with synthetic bioinstructive cues facilitates on-site differentiation of progenitor stem cells to functional mature osteoblasts and results in subsequent mineralization. Inspired by the bioactive domains of the bone extracellular matrix proteins and the mussel adhesive proteins, we synthesized peptide nanofibers to promote bone-like mineralization on the implant surface. Nanofibers functionalized with osteoinductive collagen I derived Asp-Gly-Glu-Ala (DGEA) peptide sequence provide an advantage in initial adhesion, spreading, and early commitment to osteogenic differentiation for mesenchymal stem cells (hMSCs). In this study, we demonstrated that this early osteogenic commitment, however, does not necessarily guarantee a priority for maturation into functional osteoblasts. Similar to natural biological cascades, early commitment should be further supported with additional signals to provide a long-term effect on differentiation. Here, we showed that peptide nanofibers functionalized with Glu-Glu-Glu (EEE) sequence enhanced mineralization abilities due to osteoinductive properties for late-stage differentiation of hMSCs. Mussel-inspired functionalization not only enables robust immobilization on metal surfaces, but also improves bone-like mineralization under physiologically simulated conditions. The multifunctional osteoinductive peptide nanofiber biointerfaces presented here facilitate osseointegration for long-term clinical stability. © 2014 American Chemical Society
Amyloid Inspired Self-Assembled Peptide Nanofibers
Cataloged from PDF version of article.Amyloid peptides are important components in many degenerative
diseases as well as in maintaining cellular metabolism. Their unique stable structure
provides new insights in developing new materials. Designing bioinspired selfassembling
peptides is essential to generate new forms of hierarchical nanostructures.
Here we present oppositely charged amyloid inspired peptides (AIPs),
which rapidly self-assemble into nanofibers at pH 7 upon mixing in water caused
by noncovalent interactions. Mechanical properties of the gels formed by selfassembled
AIP nanofibers were analyzed with oscillatory rheology. AIP gels
exhibited strong mechanical characteristics superior to gels formed by self-assembly
of previously reported synthetic short peptides. Rheological studies of gels
composed of oppositely charged mixed AIP molecules (AIP-1 + 2) revealed superior mechanical stability compared to individual
peptide networks (AIP-1 and AIP-2) formed by neutralization of net charges through pH change. Adhesion and elasticity
properties of AIP mixed nanofibers and charge neutralized AIP-1, AIP-2 nanofibers were analyzed by high resolution force−
distance mapping using atomic force microscopy (AFM). Nanomechanical characterization of self-assembled AIP-1 + 2, AIP-1,
and AIP-2 nanofibers also confirmed macroscopic rheology results, and mechanical stability of AIP mixed nanofibers was higher
compared to individual AIP-1 and AIP-2 nanofibers self-assembled at acidic and basic pH, respectively. Experimental results were
supported with molecular dynamics simulations by considering potential noncovalent interactions between the amino acid
residues and possible aggregate forms. In addition, HUVEC cells were cultured on AIP mixed nanofibers at pH 7 and biocompatibility
and collagen mimetic scaffold properties of the nanofibrous system were observed. Encapsulation of a zwitterionic
dye (rhodamine B) within AIP nanofiber network was accomplished at physiological conditions to demonstrate that this network
can be utilized for inclusion of soluble factors as a scaffold for cell culture studies. Copyright © 2012 American Chemical Societ
Size-controlled conformal nanofabrication of biotemplated three-dimensional TiO2 and ZnO nanonetworks
Cataloged from PDF version of article.A solvent-free fabrication of TiO2 and ZnO nanonetworks is demonstrated by using supramolecular nanotemplates with high coating conformity, uniformity, and atomic scale size control. Deposition of TiO2 and ZnO on three-dimensional nanofibrous network template is accomplished. Ultrafine control over nanotube diameter allows robust and systematic evaluation of the electrochemical properties of TiO2 and ZnO nanonetworks in terms of size-function relationship. We observe hypsochromic shift in UV absorbance maxima correlated with decrease in wall thickness of the nanotubes. Photocatalytic activities of anatase TiO2 and hexagonal wurtzite ZnO nanonetworks are found to be dependent on both the wall thickness and total surface area per unit of mass. Wall thickness has effect on photoexcitation properties of both TiO2 and ZnO due to band gap energies and total surface area per unit of mass. The present work is a successful example that concentrates on nanofabrication of intact three-dimensional semiconductor nanonetworks with controlled band gap energies
Eltrombopag for the treatment of immune thrombocytopenia: The aegean region of Turkey experience
Objective: Immune thrombocytopenia (ITP) is an immune-mediated disease characterized by transient or persistent decrease of the platelet count to less than 100x109/L. Although it is included in a benign disease group, bleeding complications may be mortal. With a better understanding of the pathophysiology of the disease, thrombopoietin receptor agonists, which came into use in recent years, seem to be an effective option in the treatment of resistant cases. This study aimed to retrospectively assess the efficacy, long-term safety, and tolerability of eltrombopag in Turkish patients with chronic ITP in the Aegean region of Turkey. Materials and Methods: Retrospective data of 40 patients with refractory ITP who were treated with eltrombopag in the Aegean region were examined and evaluated. Results: The total rate of response was 87%, and the median duration of response defined as the number of the platelets being over 50x109/L was 19.5 (interquartile range: 5-60) days. In one patient, venous sinus thrombosis was observed with no other additional risk factors due to or related to thrombosis. Another patient with complete response and irregular follow-up for 12 months was lost due to sudden death as the result of probable acute myocardial infarction. Conclusion: Although the responses to eltrombopag were satisfactory, patients need to be monitored closely for overshooting platelet counts as well as thromboembolic events. © 2015 Turkish Society of Hematology. All rights reserved
The Antimicrobial Activity of Aliquidambar orientalis mill. Against Food Pathogens and Antioxidant Capacity of Leaf Extracts
Background: Medicinal plants are an important source of substances which are claimed to induce antimicrobial, antimutagenic and antioxidanteffects. Many plants have been used due to their antimicrobial treatments. Antimicrobial and antioxidant activities of L. orientalis have not beenreported to the present day. The aim of this work was to investigate of the antimicrobial and antioxidant potentials of different extracts from L.orientalis.Materials and Methods: The extracts were screened for antimicrobial activity against different food pathogens. These bacteria include 4 Grampositive and 3 Gram negative bacteria and one fungi. The leaf extracts of plant were tested by disc diffusion assay. The MIC was evaluated onplant extracts as antimicrobial activity. In addition to, the plant extracts were tested against the stable DPPH (2,2-diphenyl-1-picryl-hydrazylhydrate) free-radical.Results: The acetone, ethanol and methanol extracts of L. orientalis showed maximum inhibition zone of 12 mm against Yersinia enterocolitica,Listeria monocytogenes and Staphylococcus aureus. In addition to, the methanol extract displayed a strong antioxidant activity (trolox equivalent= 2.23 mM).Conclusion: L. orientalis extracts have antimicrobial, and antioxidant potential. Our results support the use of this plant in traditional medicineand suggest that some of the plant extracts possess compounds with good antibacterial properties that can be used as antibacterial agents in thesearch for new drugs.Key words: Antimicrobial activity; Antioxidant activity; L. orientalis
Effects of DC-Field Excitation on the Incremental Inductance of a Variable Flux Reluctance Machine
This paper presents a method for the computation of the incremental inductances in a 12/10 variable flux reluctance machine using the hybrid analytical modeling coupled with a fixed-point nonlinear solver. The variation of incremental and apparent inductance with respect to the dc-field excitation is investigated for both zero and non-zero ac-field excitations. The results show that the difference between both inductance values is not negligible after 25 A/mm2 dc-current density for the investigated benchmark without the ac field. Moreover, when a non-zero ac field is introduced in addition to the dc-field, the apparent inductance becomes misleading not only under magnetic saturation but also under low excitation in the linear region of the saturation curve. The results obtained with the proposed nonlinear hybrid model are compared with the finite element method in terms of magnetic flux density distribution and incremental inductance value. The root-mean-square discrepancy of magnetic flux density distribution is found to be 37.6 mT. Furthermore, the discrepancy between incremental inductance results of the proposed method and the finite element model is calculated as 1.43%, while the proposed approach requires less post-processing and necessitates ten times less number of degrees-of-freedom
Convergence analysis of the fixed-point method with the hybrid analytical modeling for 2-D nonlinear magnetostatic problems
This paper presents the convergence analysis of the fixed-point method (FPM) to model the nonlinear magnetic characteristics of a 2-D magnetostatic problem. In this study, FPM is used as the iterative nonlinear solver of the hybrid analytical modeling (HAM) technique for the accurate computation of the magnetic field distribution. The benchmark consists of a stator with excitation windings, an airgap, and a slotless mover. The relative errors between two successive iterations are calculated using different error estimators: the attraction force on the mover, the Fourier coefficients defined in the airgap, the magnetic flux density, and the magnetic scalar potential distributions. The effect of the number of mesh elements and harmonics on the accuracy and computational cost of the model is investigated for different levels of magnetic saturation. It is observed that the maximum rate of change in the relative difference of attraction force during the iterations is found to be 0.52 under the magnetic saturation. In addition, the absolute error of the attraction force between the developed hybrid model with FPM and the finite element method (FEM) is achieved to be 0.18%, while HAM has approximately three times less number of degrees-of-freedom compared to FEM
- …
