33,589 research outputs found

    Universal Conductance Distribution in the Quantum Size Regime

    Full text link
    We study the conductance (g) distribution function of an ensemble of isolated conducting rings, with an Aharonov--Bohm flux. This is done in the discrete spectrum limit, i.e., when the inelastic rate, frequency and temperature are all smaller than the mean level spacing. Over a wide range of g the distribution function exhibits universal behavior P(g)\sim g^{-(4+\beta)/3}, where \beta=1 (2) for systems with (without) a time reversal symmetry. The nonuniversal large g tail of this distribution determines the values of high moments.Comment: 13 pages+1 figure, RevTEX

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer--results from two randomised studies

    Get PDF
    INTRODUCTION: Endometrial cancer patients with high grade tumours, deep myometrial invasion or advanced stage disease have a poor prognosis. Randomised studies have demonstrated the prevention of loco-regional relapses with radiotherapy (RT) with no effect on overall survival (OS). The possible additive effect of chemotherapy (CT) remains unclear. Two randomised clinical trials (NSGO-EC-9501/EORTC-55991 and MaNGO ILIADE-III) were undertaken to clarify if sequential combination of chemotherapy and radiotherapy improves progression-free survival (PFS) in high-risk endometrial cancer. The two studies were pooled. METHODS: Patients (n=540; 534 evaluable) with operated endometrial cancer International Federation of Obstetrics and Gynaecology (FIGO) stage I-III with no residual tumour and prognostic factors implying high-risk were randomly allocated to adjuvant radiotherapy with or without sequential chemotherapy. RESULTS: In the NSGO/EORTC study, the combined modality treatment was associated with 36% reduction in the risk for relapse or death (hazard ratio (HR) 0.64, 95%confidence interval (CI) 0.41-0.99; P=0.04); two-sided tests were used. The result from the Gynaecologic Oncology group at the Mario Negri Institute (MaNGO)-study pointed in the same direction (HR 0.61), but was not significant. In the combined analysis, the estimate of risk for relapse or death was similar but with narrower confidence limits (HR 0.63, CI 0.44-0.89; P=0.009). Neither study showed significant differences in the overall survival. In the combined analysis, overall survival approached statistical significance (HR 0.69, CI 0.46-1.03; P=0.07) and cancer-specific survival (CSS) was significant (HR 0.55, CI 0.35-0.88; P=0.01). CONCLUSION: Addition of adjuvant chemotherapy to radiation improves progression-free survival in operated endometrial cancer patients with no residual tumour and a high-risk profile. A remaining question for future studies is if addition of radiotherapy to chemotherapy improves the results

    Magnetization reversal and local switching fields of ferromagnetic Co/Pd microtubes with radial magnetization

    Get PDF
    Three-dimensional nanomagnetism is a rapidly growing field of research covering both noncollinear spin textures and curved magnetic geometries including microtubular structures. We spatially resolve the field-induced magnetization reversal of free-standing ferromagnetic microtubes utilizing multifrequency magnetic force microscopy (MFM). The microtubes are composed of Co/Pd multilayer films with perpendicular magnetic anisotropy that translates to an anisotropy with radial easy axis upon rolling-up. Simultaneously mapping the topography and the perpendicular magnetostatic force derivative, the relation between surface angle and local magnetization configuration is evaluated for a large number of locations with slopes exceeding 45 degrees. The angle-dependence of the switching field is concurrent with the Kondorsky model, i.e., the rolled-up nanomembrane behaves like a planar magnetic film with perpendicular anisotropy and a pinning dominated magnetization reversal. Additionally, we discuss methodological challenges when detecting magnetostatic force derivatives near steep surfaces

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    Multiple exon skipping strategies to by-pass dystrophin mutations.

    Get PDF
    Manipulation of dystrophin pre-mRNA processing offers the potential to overcome mutations in the dystrophin gene that would otherwise lead to Duchenne muscular dystrophy. Dystrophin mutations will require the removal of one or more exons to restore the reading frame and in some cases, multiple exon skipping strategies exist to restore dystrophin expression. However, for some small intra-exonic mutations, a third strategy, not applicable to whole exon deletions, may be possible. The removal of only one frame-shifting exon flanking the mutation-carrying exon may restore the reading frame and allow synthesis of a functional dystrophin isoform, providing that no premature termination codons are encountered. For these mutations, the removal of only one exon offers a simpler, cheaper and more feasible alternative approach to the dual exon skipping that would otherwise be considered. We present strategies to by-pass intra-exonic dystrophin mutations that clearly demonstrate the importance of tailoring exon skipping strategies to specific patient mutations

    Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles

    Full text link
    The distribution function of the local density of states is computed exactly for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of time-reversal symmetry, precise agreement is obtained with the "supersymmetry" theory by Efetov and Prigodin of the NMR lineshape in disordered metal particles. Upon breaking time-reversal symmetry, the variance of the Knight shift in the smallest particles is reduced by a universal factor of 2/3. ***To be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017: figure included in text
    corecore