25,899 research outputs found
Game theory of mind
This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution
Snoring in Portuguese primary school children
OBJECTIVE: To determine the prevalence of snoring and its potential associations with sleep problems, such as daytime symptoms, medical conditions, school performance, and behavioral disturbances in Portuguese children attending primary school. METHODS: A previously validated questionnaire was sent to the parents of 1381 children attending primary schools in a parish of Coimbra, Portugal. To assess behavioral disturbances, the Portuguese version of Rutter's Children's Behavior Questionnaire for completion by teachers was used. RESULTS: Of the 988 questionnaires returned (71.5%), complete information concerning snoring was obtained for 976 children (496 girls and 480 boys; mean age: 8.1 +/- 1.5 years). Loud snoring during sleep was reported as frequent or constantly present (LSn) in 84 children (8.6%), as occasionally present in 299 children (30.6%), and as never present (NSn) by 593 children (60.8%). The LSn and NSn groups did not differ with respect to age, gender, sleep duration, time to fall asleep, frequency of night wakings, bedwetting, daytime tiredness, and school achievement. However, LSn was significantly associated with increased bedtime problems (fears and struggles), increased need for comforting activities to fall asleep, behaviors suggestive of parasomnias (sleep talking, teeth grinding, and night terrors), increased daytime sleepiness and irritability, and behavioral disturbances. Children in the LSn group were also more likely to report recurrent medical problems particularly those involving infections of the respiratory tract. CONCLUSIONS: Snoring is a common symptom in Portuguese children that is associated with behavioral daytime and sleep time disturbances. Children with loud snoring may benefit from early evaluation and intervention
Electro-optically tunable microring resonators in lithium niobate
Optical microresonators have recently attracted a growing attention in the
photonics community. Their applications range from quantum electro-dynamics to
sensors and filtering devices for optical telecommunication systems, where they
are likely to become an essential building block. The integration of nonlinear
and electro-optical properties in the resonators represents a very stimulating
challenge, as it would incorporate new and more advanced functionality. Lithium
niobate is an excellent candidate material, being an established choice for
electro-optic and nonlinear optical applications. Here we report on the first
realization of optical microring resonators in submicrometric thin films of
lithium niobate. The high index contrast films are produced by an improved
crystal ion slicing and bonding technique using benzocyclobutene. The rings
have radius R=100 um and their transmission spectrum has been tuned using the
electro-optic effect. These results open new perspectives for the use of
lithium niobate in chip-scale integrated optical devices and nonlinear optical
microcavities.Comment: 15 pages, 8 figure
Synthesized grain size distribution in the interstellar medium
We examine a synthetic way of constructing the grain size distribution in the
interstellar medium (ISM). First we formulate a synthetic grain size
distribution composed of three grain size distributions processed with the
following mechanisms that govern the grain size distribution in the Milky Way:
(i) grain growth by accretion and coagulation in dense clouds, (ii) supernova
shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by
turbulence in diffuse ISM. Then, we examine if the observational grain size
distribution in the Milky Way (called MRN) is successfully synthesized or not.
We find that the three components actually synthesize the MRN grain size
distribution in the sense that the deficiency of small grains by (i) and (ii)
is compensated by the production of small grains by (iii). The fraction of each
{contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the
relative importance of the three {contributions} to all grain processing
mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the
Milky Way extinction curve is reproduced with the synthetic grain size
distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and
Spac
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
Spin qubits with electrically gated polyoxometalate molecules
Spin qubits offer one of the most promising routes to the implementation of
quantum computers. Very recent results in semiconductor quantum dots show that
electrically-controlled gating schemes are particularly well-suited for the
realization of a universal set of quantum logical gates. Scalability to a
larger number of qubits, however, remains an issue for such semiconductor
quantum dots. In contrast, a chemical bottom-up approach allows one to produce
identical units in which localized spins represent the qubits. Molecular
magnetism has produced a wide range of systems with tailored properties, but
molecules permitting electrical gating have been lacking. Here we propose to
use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be
coupled through the electrons of the central core. Via electrical manipulation
of the molecular redox potential, the charge of the core can be changed. With
this setup, two-qubit gates and qubit readout can be implemented.Comment: 9 pages, 6 figures, to appear in Nature Nanotechnolog
The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances
The first stars in the Universe are predicted to have been much more massive
than the Sun. Gravitational condensation accompanied by cooling of the
primordial gas due to molecular hydrogen, yields a minimum fragmentation scale
of a few hundred solar masses. Numerical simulations indicate that once a gas
clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction
without further fragmentation. Here we show that as soon as the primordial gas
- left over from the Big Bang - is enriched by supernovae to a carbon or oxygen
abundance as small as ~0.01-0.1% of that found in the Sun, cooling by
singly-ionized carbon or neutral oxygen can lead to the formation of low-mass
stars. This mechanism naturally accommodates the discovery of solar mass stars
with unusually low (10^{-5.3} of the solar value) iron abundance but with a
high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early
epochs is partially regulated by the temperature of the cosmic microwave
background. The derived critical abundances can be used to identify those
metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by
the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature
Beyond Cookie Monster Amnesia:Real World Persistent Online Tracking
Browser fingerprinting is a relatively new method of uniquely identifying
browsers that can be used to track web users. In some ways it is more
privacy-threatening than tracking via cookies, as users have no direct control
over it. A number of authors have considered the wide variety of techniques
that can be used to fingerprint browsers; however, relatively little
information is available on how widespread browser fingerprinting is, and what
information is collected to create these fingerprints in the real world. To
help address this gap, we crawled the 10,000 most popular websites; this gave
insights into the number of websites that are using the technique, which
websites are collecting fingerprinting information, and exactly what
information is being retrieved. We found that approximately 69\% of websites
are, potentially, involved in first-party or third-party browser
fingerprinting. We further found that third-party browser fingerprinting, which
is potentially more privacy-damaging, appears to be predominant in practice. We
also describe \textit{FingerprintAlert}, a freely available browser extension
we developed that detects and, optionally, blocks fingerprinting attempts by
visited websites
Is the Shroud of Turin in Relation to the Old Jerusalem Historical Earthquake?
Phillips and Hedges suggested, in the scientific magazine Nature (1989), that
neutron radiation could be liable of a wrong radiocarbon dating, while proton
radiation could be responsible of the Shroud body image formation. On the other
hand, no plausible physical reason has been proposed so far to explain the
radiation source origin, and its effects on the linen fibres. However, some
recent studies, carried out by the first author and his Team at the Laboratory
of Fracture Mechanics of the Politecnico di Torino, found that it is possible
to generate neutron emissions from very brittle rock specimens in compression
through piezonuclear fission reactions. Analogously, neutron flux increments,
in correspondence to seismic activity, should be a result of the same
reactions. A group of Russian scientists measured a neutron flux exceeding the
background level by three orders of magnitude in correspondence to rather
appreciable earthquakes (4th degree in Richter Scale). The authors consider the
possibility that neutron emissions by earthquakes could have induced the image
formation on Shroud linen fibres, trough thermal neutron capture by Nitrogen
nuclei, and provided a wrong radiocarbon dating due to an increment in
C(14,6)content. Let us consider that, although the calculated integral flux of
10^13 neutrons per square centimetre is 10 times greater than the cancer
therapy dose, nevertheless it is100 times smaller than the lethal dose.Comment: 13 pages, 1 figur
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
- …
