31,865 research outputs found

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution

    Get PDF
    Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings

    ZnO:Co Diluted Magnetic Semiconductor or Hybrid Nanostructure for Spintronics?

    Full text link
    We have studied the influence of intrinsic and extrinsic defects in the magnetic and electrical transport properties of Co-doped ZnO thin films. X ray absorption measurements show that Co substitute Zn in the ZnO structure and it is in the 2+ oxidation state. Magnetization (M) measurements show that doped samples are mainly paramagnetic. From M vs. H loops measured at 5 K we found that the values of the orbital L and spin S numbers are between 1 and 1.3 for L and S = 3/2, in agreement with the representative values for isolated Co 2+. The obtained negative values of the Curie-Weiss temperatures indicate the existence of antiferromagnetic interactions between transition metal atoms.Comment: To be published in Journal of Materials Scienc

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    Vertex importance extension of betweenness centrality algorithm

    Get PDF
    Variety of real-life structures can be simplified by a graph. Such simplification emphasizes the structure represented by vertices connected via edges. A common method for the analysis of the vertices importance in a network is betweenness centrality. The centrality is computed using the information about the shortest paths that exist in a graph. This approach puts the importance on the edges that connect the vertices. However, not all vertices are equal. Some of them might be more important than others or have more significant influence on the behavior of the network. Therefore, we introduce the modification of the betweenness centrality algorithm that takes into account the vertex importance. This approach allows the further refinement of the betweenness centrality score to fulfill the needs of the network better. We show this idea on an example of the real traffic network. We test the performance of the algorithm on the traffic network data from the city of Bratislava, Slovakia to prove that the inclusion of the modification does not hinder the original algorithm much. We also provide a visualization of the traffic network of the city of Ostrava, the Czech Republic to show the effect of the vertex importance adjustment. The algorithm was parallelized by MPI (http://www.mpi-forum.org/) and was tested on the supercomputer Salomon (https://docs.it4i.cz/) at IT4Innovations National Supercomputing Center, the Czech Republic.808726

    Game theory of mind

    Get PDF
    This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution

    Instantaneous Shape Sampling - a model for the γ\gamma-absorption cross section of transitional nuclei

    Get PDF
    The influence of the quadrupole shape fluctuations on the dipole vibrations in transitional nuclei is investigated in the framework of the Instantaneous Shape Sampling Model, which combines the Interacting Boson Model for the slow collective quadrupole motion with the Random Phase Approximation for the rapid dipole vibrations. Coupling to the complex background configurations is taken into account by folding the results with a Lorentzian with an energy dependent width. The low-energy energy portion of the γ\gamma- absorption cross section, which is important for photo-nuclear processes, is studied for the isotopic series of Kr, Xe, Ba, and Sm. The experimental cross sections are well reproduced. The low-energy cross section is determined by the Landau fragmentation of the dipole strength and its redistribution caused by the shape fluctuations. Collisional damping only wipes out fluctuations of the absorption cross section, generating the smooth energy dependence observed in experiment. In the case of semi-magic nuclei, shallow pygmy resonances are found in agreement with experiment

    Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles

    Full text link
    The distribution function of the local density of states is computed exactly for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of time-reversal symmetry, precise agreement is obtained with the "supersymmetry" theory by Efetov and Prigodin of the NMR lineshape in disordered metal particles. Upon breaking time-reversal symmetry, the variance of the Knight shift in the smallest particles is reduced by a universal factor of 2/3. ***To be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017: figure included in text

    Quantum nondemolition measurement of mechanical motion quanta

    Get PDF
    The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mechanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved. Here, we propose and analyse an electromechanical setup, which allows to overcome this limitation and resolve the energy levels of a mechanical oscillator. We find that the heating of the membrane, caused by the interaction with the environment and unwanted couplings, can be suppressed for carefully designed electromechanical systems. The results suggest that phonon number measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia

    Protection of Fundamental Rights Post-Lisbon:The Interaction between the EU Charter of Fundamental Rights, the European Convention on Human Rights (ECHR) and National Constitutions (FIDE National Report for the United Kingdom)

    Get PDF
    This is the United Kingdom national report for the FIDE XXV Congress on the 'Protection of Fundamental Rights Post-Lisbon'. The national report consist of answers from a UK perspective to questions posed by the general rapporteur on the following general topics: Nature and scope of fundamental rights protected; Horizontal Effect and Collision of rights; Consequences of the entry into force of the EU Charter of Fundamental Rights; Consequences of the accession of the EU to the ECHR; The future of fundamental rights protection, national and European, in the EU as an ‘area of fundamental rights’
    corecore