9,290 research outputs found
Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts
The NASA Global Tropospheric Experiment (GTE) Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) expedition was conducted September 21 through October 26, 1992, to investigate factors responsible for creating the seasonal South Atlantic tropospheric ozone maximum. During these flights, fine aerosol (0.1-3.0 μm) number densities were observed to be enhanced roughly tenfold over remote regions of the tropical South Atlantic and greater over adjacent continental areas, relative to northern hemisphere observations and to measurements recorded in the same area during Ac wet season. Chemical and meteorological analyses as well as visual observations indicate that the primary source of these enhancements was biomass burning occurring within grassland regions of north central Brazil and southeastern Africa. These fires exhibited fine aerosol (N) emission ratios relative to CO (dN/dCO) of 22.5 ± 9.7 and 23.6 ± 15.1 cm-3 parts per billion by volume (ppbv)-1 over Brazil and Africa, respectively. Convection coupled with counterclockwise flow around the South Atlantic subtropical anticyclone subsequently distributed these aerosols throughout the remote South Atlantic troposphere. We calculate that dilute smoke from biomass burning produced an average tenfold enhancement in optical depth over the continental regions as well as a 50% increase in this parameter over the middle South Atlantic Ocean; these changes correspond to an estimated net cooling of up to 25 W m-2 and 2.4 W m-2 during clear-sky conditions over savannas and ocean respectively. Over the ocean our analyses suggest that modification of CCN concentrations within the persistent eastern Atlantic marine stratocumulus clouds by entrainment of subsiding haze layers could significantly increase cloud albedo resulting in an additional surface radiative cooling potentially greater in magnitude than that caused by direct extinction of solar radiation by the aerosol particles themselves
Progressive Transactional Memory in Time and Space
Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared \emph{data items} into atomic transactions. A
transaction may commit, in which case it appears to have executed sequentially
or it may \emph{abort}, in which case no data item is updated.
The TM programming paradigm emerged as an alternative to conventional
fine-grained locking techniques, offering ease of programming and
compositionality. Though typically themselves implemented using locks, TMs hide
the inherent issues of lock-based synchronization behind a nice transactional
programming interface.
In this paper, we explore inherent time and space complexity of lock-based
TMs, with a focus of the most popular class of \emph{progressive} lock-based
TMs. We derive that a progressive TM might enforce a read-only transaction to
perform a quadratic (in the number of the data items it reads) number of steps
and access a linear number of distinct memory locations, closing the question
of inherent cost of \emph{read validation} in TMs. We then show that the total
number of \emph{remote memory references} (RMRs) that take place in an
execution of a progressive TM in which concurrent processes perform
transactions on a single data item might reach , which
appears to be the first RMR complexity lower bound for transactional memory.Comment: Model of Transactional Memory identical with arXiv:1407.6876,
arXiv:1502.0272
Metal-insulator crossover in the Boson-Fermion model in infinite dimensions
The Boson-Fermion model, describing a mixture of tightly bound electron pairs
and quasi-free electrons hybridized with each other via a charge exchange term,
is studied in the limit of infinite dimensions, using the Non-Crossing
Approximation within the Dynamical Mean Field Theory. It is shown that a
metal-insulator crossover, driven by strong pair fluctuations, takes place as
the temperature is lowered. It manifests itself in the opening of a pseudogap
in the electron density of states, accompanied by a corresponding effect in the
optical and dc conductivity.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers
superconducting/ferromagnetic
(SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a
characteristic difference between the structural and magnetic depth profiles is
obtained from the occurrence of a structurally forbidden Bragg peak in the FM
state. The comparison with simulated reflectivity curves allows us to identify
two possible magnetization profiles: a sizable magnetic moment within the SC
layer antiparallel to the one in the FM layer (inverse proximity effect), or a
``dead'' region in the FM layer with zero net magnetic moment. The former
scenario is supported by an anomalous SC-induced enhancement of the
off-specular reflection, which testifies to a strong mutual interaction of SC
and FM order parameters.Comment: 4 pages, 2 figures, submitted to PR
A study of high-energy proton induced damage in Cerium Fluoride in comparison with measurements in Lead Tungstate calorimeter crystals
A Cerium Fluoride crystal produced during early R&D studies for calorimetry
at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence
Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking
its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on
proton-induced damage to the crystal and its spontaneous recovery after both
irradiations are presented here, along with some new, complementary data on
proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation
results is performed and a qualitative understanding of high-energy damage
mechanism is attempted.Comment: Submitted to Elsevier Science on May 6th, 2010; 11 pages, 8 figure
Screening families of patients with premature coronary heart disease to identify avoidable cardiovascular risk: a cross-sectional study of family members and a general population comparison group
<b>Background:</b>
Primary prevention should be targeted at individuals with high global cardiovascular risk, but research is lacking on how best to identify such individuals in the general population. Family history is a good proxy measure of global risk and may provide an efficient mechanism for identifying high risk individuals. The aim was to test the feasibility of using patients with premature cardiovascular disease to recruit family members as a means of identifying and screening high-risk individuals.
<b>Findings:</b>
We recruited family members of 50 patients attending a cardiology clinic for premature coronary heart disease (CHD). We compared their cardiovascular risk with a general population control group, and determined their perception of their risk and current level of screening. 103 (36%) family members attended screening (27 siblings, 48 adult offspring and 28 partners). Five (5%) had prevalent CHD. A significantly higher percentage had an ASSIGN risk score >20% compared with the general population (13% versus 2%, p < 0.001). Only 37% of family members were aware they were at increased risk and only 50% had had their blood pressure and serum cholesterol level checked in the previous three years.
<b>Conclusions:</b>
Patients attending hospital for premature CHD provide a mechanism to contact family members and this can identify individuals with a high global risk who are not currently screened
Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime
The recent observation of coherent backscattering (CBS) of light by atoms has
emphasized the key role of the velocity spread and of the quantum internal
structure of the atoms. Firstly, using highly resonant scatterers imposes very
low temperatures of the disordered medium in order to keep the full contrast of
the CBS interference. This criterion is usually achieved with standard laser
cooling techniques. Secondly, a non trivial internal atomic structure leads to
a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with
a non trivial internal structure) and with Strontium (with the simplest
possible internal structure) show this behaviour and confirm theoretical
calculations
A Rigorous Proof of Fermi Liquid Behavior for Jellium Two-Dimensional Interacting Fermions
Using the method of continuous constructive renormalization group around the
Fermi surface, it is proved that a jellium two-dimensional interacting system
of Fermions at low temperature remains analytic in the coupling constant
for where is some numerical constant
and is the temperature. Furthermore in that range of parameters, the first
and second derivatives of the self-energy remain bounded, a behavior which is
that of Fermi liquids and in particular excludes Luttinger liquid behavior. Our
results prove also that in dimension two any transition temperature must be
non-perturbative in the coupling constant, a result expected on physical
grounds. The proof exploits the specific momentum conservation rules in two
dimensions.Comment: 4 pages, no figure
- …
