9,290 research outputs found

    Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts

    Get PDF
    The NASA Global Tropospheric Experiment (GTE) Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) expedition was conducted September 21 through October 26, 1992, to investigate factors responsible for creating the seasonal South Atlantic tropospheric ozone maximum. During these flights, fine aerosol (0.1-3.0 μm) number densities were observed to be enhanced roughly tenfold over remote regions of the tropical South Atlantic and greater over adjacent continental areas, relative to northern hemisphere observations and to measurements recorded in the same area during Ac wet season. Chemical and meteorological analyses as well as visual observations indicate that the primary source of these enhancements was biomass burning occurring within grassland regions of north central Brazil and southeastern Africa. These fires exhibited fine aerosol (N) emission ratios relative to CO (dN/dCO) of 22.5 ± 9.7 and 23.6 ± 15.1 cm-3 parts per billion by volume (ppbv)-1 over Brazil and Africa, respectively. Convection coupled with counterclockwise flow around the South Atlantic subtropical anticyclone subsequently distributed these aerosols throughout the remote South Atlantic troposphere. We calculate that dilute smoke from biomass burning produced an average tenfold enhancement in optical depth over the continental regions as well as a 50% increase in this parameter over the middle South Atlantic Ocean; these changes correspond to an estimated net cooling of up to 25 W m-2 and 2.4 W m-2 during clear-sky conditions over savannas and ocean respectively. Over the ocean our analyses suggest that modification of CCN concentrations within the persistent eastern Atlantic marine stratocumulus clouds by entrainment of subsiding haze layers could significantly increase cloud albedo resulting in an additional surface radiative cooling potentially greater in magnitude than that caused by direct extinction of solar radiation by the aerosol particles themselves

    Progressive Transactional Memory in Time and Space

    Full text link
    Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared \emph{data items} into atomic transactions. A transaction may commit, in which case it appears to have executed sequentially or it may \emph{abort}, in which case no data item is updated. The TM programming paradigm emerged as an alternative to conventional fine-grained locking techniques, offering ease of programming and compositionality. Though typically themselves implemented using locks, TMs hide the inherent issues of lock-based synchronization behind a nice transactional programming interface. In this paper, we explore inherent time and space complexity of lock-based TMs, with a focus of the most popular class of \emph{progressive} lock-based TMs. We derive that a progressive TM might enforce a read-only transaction to perform a quadratic (in the number of the data items it reads) number of steps and access a linear number of distinct memory locations, closing the question of inherent cost of \emph{read validation} in TMs. We then show that the total number of \emph{remote memory references} (RMRs) that take place in an execution of a progressive TM in which nn concurrent processes perform transactions on a single data item might reach Ω(nlogn)\Omega(n \log n), which appears to be the first RMR complexity lower bound for transactional memory.Comment: Model of Transactional Memory identical with arXiv:1407.6876, arXiv:1502.0272

    Metal-insulator crossover in the Boson-Fermion model in infinite dimensions

    Full text link
    The Boson-Fermion model, describing a mixture of tightly bound electron pairs and quasi-free electrons hybridized with each other via a charge exchange term, is studied in the limit of infinite dimensions, using the Non-Crossing Approximation within the Dynamical Mean Field Theory. It is shown that a metal-insulator crossover, driven by strong pair fluctuations, takes place as the temperature is lowered. It manifests itself in the opening of a pseudogap in the electron density of states, accompanied by a corresponding effect in the optical and dc conductivity.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates

    Full text link
    Physical effects of bilayer coupling on the tunneling spectroscopy of high Tc_{c} cuprates are investigated. The bilayer coupling separates the bonding and antibonding bands and leads to a splitting of the coherence peaks in the tunneling differential conductance. However, the coherence peak of the bonding band is strongly suppressed and broadened by the particle-hole asymmetry in the density of states and finite quasiparticle life-time, and is difficult to resolve by experiments. This gives a qualitative account why the bilayer splitting of the coherence peaks was not clearly observed in tunneling measurements of double-layer high-Tc_c oxides.Comment: 4 pages, 3 figures, to be published in PR

    Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers

    Full text link
    YBa2Cu3O7/La2/3Ca1/3MnO3\mathrm{YBa_2Cu_3O_7/La_{2/3}Ca_{1/3}MnO_3} superconducting/ferromagnetic (SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a characteristic difference between the structural and magnetic depth profiles is obtained from the occurrence of a structurally forbidden Bragg peak in the FM state. The comparison with simulated reflectivity curves allows us to identify two possible magnetization profiles: a sizable magnetic moment within the SC layer antiparallel to the one in the FM layer (inverse proximity effect), or a ``dead'' region in the FM layer with zero net magnetic moment. The former scenario is supported by an anomalous SC-induced enhancement of the off-specular reflection, which testifies to a strong mutual interaction of SC and FM order parameters.Comment: 4 pages, 2 figures, submitted to PR

    A study of high-energy proton induced damage in Cerium Fluoride in comparison with measurements in Lead Tungstate calorimeter crystals

    Full text link
    A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on proton-induced damage to the crystal and its spontaneous recovery after both irradiations are presented here, along with some new, complementary data on proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation results is performed and a qualitative understanding of high-energy damage mechanism is attempted.Comment: Submitted to Elsevier Science on May 6th, 2010; 11 pages, 8 figure

    Screening families of patients with premature coronary heart disease to identify avoidable cardiovascular risk: a cross-sectional study of family members and a general population comparison group

    Get PDF
    <b>Background:</b> Primary prevention should be targeted at individuals with high global cardiovascular risk, but research is lacking on how best to identify such individuals in the general population. Family history is a good proxy measure of global risk and may provide an efficient mechanism for identifying high risk individuals. The aim was to test the feasibility of using patients with premature cardiovascular disease to recruit family members as a means of identifying and screening high-risk individuals. <b>Findings:</b> We recruited family members of 50 patients attending a cardiology clinic for premature coronary heart disease (CHD). We compared their cardiovascular risk with a general population control group, and determined their perception of their risk and current level of screening. 103 (36%) family members attended screening (27 siblings, 48 adult offspring and 28 partners). Five (5%) had prevalent CHD. A significantly higher percentage had an ASSIGN risk score >20% compared with the general population (13% versus 2%, p < 0.001). Only 37% of family members were aware they were at increased risk and only 50% had had their blood pressure and serum cholesterol level checked in the previous three years. <b>Conclusions:</b> Patients attending hospital for premature CHD provide a mechanism to contact family members and this can identify individuals with a high global risk who are not currently screened

    Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime

    Full text link
    The recent observation of coherent backscattering (CBS) of light by atoms has emphasized the key role of the velocity spread and of the quantum internal structure of the atoms. Firstly, using highly resonant scatterers imposes very low temperatures of the disordered medium in order to keep the full contrast of the CBS interference. This criterion is usually achieved with standard laser cooling techniques. Secondly, a non trivial internal atomic structure leads to a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with a non trivial internal structure) and with Strontium (with the simplest possible internal structure) show this behaviour and confirm theoretical calculations

    A Rigorous Proof of Fermi Liquid Behavior for Jellium Two-Dimensional Interacting Fermions

    Full text link
    Using the method of continuous constructive renormalization group around the Fermi surface, it is proved that a jellium two-dimensional interacting system of Fermions at low temperature TT remains analytic in the coupling constant λ\lambda for λlogTK|\lambda| |\log T| \le K where KK is some numerical constant and TT is the temperature. Furthermore in that range of parameters, the first and second derivatives of the self-energy remain bounded, a behavior which is that of Fermi liquids and in particular excludes Luttinger liquid behavior. Our results prove also that in dimension two any transition temperature must be non-perturbative in the coupling constant, a result expected on physical grounds. The proof exploits the specific momentum conservation rules in two dimensions.Comment: 4 pages, no figure
    corecore