4,924 research outputs found
Strange and singlet form factors of the nucleon: Predictions for G0, A4, and HAPPEX-II experiments
We investigate the strange and flavor-singlet electric and magnetic form
factors of the nucleon within the framework of the SU(3) chiral quark-soliton
model. Isospin symmetry is assumed and the symmetry-conserving SU(3)
quantization is employed, rotational and strange quark mass corrections being
included. For the experiments G0, A4, and HAPPEX-II we predict the quantities
and . The dependence
of the results on the parameters of the model and the treatment of the Yukawa
asymptotic behavior of the soliton are investigated.Comment: 16 pages, 3 figures, Final version for publication in Eur. Phys. J.
Q-Value and Half-Lives for the Double-Beta-Decay Nuclide 110Pd
The 110Pd double-beta decay Q-value was measured with the Penning-trap mass
spectrometer ISOLTRAP to be Q = 2017.85(64) keV. This value shifted by 14 keV
compared to the literature value and is 17 times more precise, resulting in new
phase-space factors for the two-neutrino and neutrinoless decay modes. In
addition a new set of the relevant matrix elements has been calculated. The
expected half-life of the two-neutrino mode was reevaluated as 1.5(6) E20 yr.
With its high natural abundance, the new results reveal 110Pd to be an
excellent candidate for double-beta decay studies
Clinical and serologic responses to human ‘apathogenic' trypanosomes
We describe a female patient suffering from a benign self-healing febrile disease with strongly positive serology for Trypanosoma brucei. The patient showed a clinical picture with similarities to that of human African trypanosomiasis (HAT). HAT due to T. b. gambiense and T. b. rhodesiense were ruled out. We performed serologic tests because the patient was worried about HAT after receiving tsetse bites. The possibilities of an infection with human ‘apathogenic' trypanosomes such as T. b. brucei, T. congolense or T. vivax are discusse
The WITCH experiment: Acquiring the first recoil ion spectrum
The standard model of the electroweak interaction describes beta-decay in the
well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay
includes also other possible interaction types, e.g. scalar (S) and tensor (T)
contributions, which are not fully ruled out yet experimentally. The WITCH
experiment aims to study a possible admixture of these exotic interaction types
in nuclear beta-decay by a precise measurement of the shape of the recoil ion
energy spectrum. The experimental set-up couples a double Penning trap system
and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was
recently shown to be fully operational. The current status of the experiment is
presented together with the data acquired during the 2006 campaign, showing the
first recoil ion energy spectrum obtained. The data taking procedure and
corresponding data acquisition system are described in more detail. Several
further technical improvements are briefly reviewed.Comment: 11 pages, 6 figures, conference proceedings EMIS 2007
(http://emis2007.ganil.fr), published also in NIM B:
doi:10.1016/j.nimb.2008.05.15
CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients
Background: Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome.
Methods: Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and − 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays.
Results: EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival.
Conclusions: Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis
Microscopic description of cluster radioactivity in actinide nuclei
Cluster radioactivity is the emission of a fragment heavier than an α particle and lighter than mass 50. The range of clusters observed in experiments goes from 14C to 32Si while the heavy mass residue is always a nucleus in the neighborhood of the doubly-magic 208Pb nucleus. Cluster radioactivity is described in this paper as very asymmetric nuclear fission. A new fission valley leading to a decay with large fragment mass asymmetry matching the cluster radioactivity products is found. The mass octupole moment is found to be more convenient than the standard quadrupole moment as the parameter driving the system to fission. The mean-field Hartree-Fock-Bogoliubov theory with the phenomenological Gogny interaction has been used to compute the cluster emission properties of a wide range of even-even actinide nuclei from 222Ra to 242Cm, where emission of the clusters has been experimentally observed. Computed half-lives for cluster emission are compared with experimental results. The noticeable agreement obtained between the predicted properties of cluster emission (namely, cluster masses and emission half-lives) and the measured data confirms the validity of the proposed methodology in the analysis of the phenomenon of cluster radioactivity. A continuous fission path through the scission point has been described using the neck parameter constraintThe work of LMR was supported by Ministerio de Ciencia e Innovacion (Spain) Grants No. FPA2009-08958 and No. FIS2009-07277, as well as by Consolider-Ingenio 2010 Programs CPAN CSD2007-00042 and MULTIDARK CSD2009- 00064. The work of MW was supported by Ministerstwo Nauki i Szkolnictwa Wyzszego (Poland) under Grant No. N N202 23113
The {\eta}'-carbon potential at low meson momenta
The production of mesons in coincidence with forward-going
protons has been studied in photon-induced reactions on C and on a
liquid hydrogen (LH) target for incoming photon energies of 1.3-2.6 GeV at
the electron accelerator ELSA. The mesons have been identified
via the decay
registered with the CBELSA/TAPS detector system. Coincident protons have been
identified in the MiniTAPS BaF array at polar angles of . Under these kinematic constraints the
mesons are produced with relatively low kinetic energy (
150 MeV) since the coincident protons take over most of the momentum of the
incident-photon beam. For the C-target this allows the determination of the
real part of the -carbon potential at low meson momenta by
comparing with collision model calculations of the kinetic energy
distribution and excitation function. Fitting the latter data for
mesons going backwards in the center-of-mass system yields a potential depth of
V = (44 16(stat)15(syst)) MeV, consistent with earlier
determinations of the potential depth in inclusive measurements for average
momenta of 1.1 GeV/. Within the experimental
uncertainties, there is no indication of a momentum dependence of the
-carbon potential. The LH data, taken as a reference to check
the data analysis and the model calculations, provide differential and integral
cross sections in good agreement with previous results for
photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with
arXiv:1608.0607
Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K
The recently confirmed neutron-shell closure at N = 32 has been investigated
for the first time below the magic proton number Z = 20 with mass measurements
of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide
investigated at the online mass spectrometer ISOLTRAP. The resulting
two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly
lower than for 52Ca, highlighting the doubly-magic nature of this nuclide.
Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations
are challenged by the new measurements but reproduce qualitatively the observed
shell effect.Comment: 5 pages, 5 figure
The magnetic fields of large Virgo Cluster spirals
Because of its proximity the Virgo Cluster is an excellent target for
studying interactions of galaxies with the cluster environment. Both the
high-velocity tidal interactions and effects of ram pressure stripping by the
intracluster gas can be investigated. Optical and/or \ion{H}{i} observations do
not always show effects of weak interactions between galaxies and their
encounters with the cluster medium. For this reason we searched for possible
anomalies in the magnetic field structure in Virgo Cluster spirals which could
be attributed to perturbations in their gas distribution and kinematics. Five
angularly large Virgo Cluster spiral galaxies (NGC 4501, NGC 4438, NGC 4535,
NGC 4548 and NGC 4654) were the targets for a sensitive total power and
polarization study using the 100-m radio telescope in Effelsberg at 4.85 GHz.
For two objects polarization data at higher frequencies have been obtained
allowing Faraday rotation analysis. Distorted magnetic field structures were
identified in all galaxies. Interaction-induced magnetized outflows were found
in NGC 4438 (due to nuclear activity) and NGC 4654 (a combination of tidal
tails and ram pressure effects). Almost all objects (except the anaemic NGC
4548) exhibit distortions in polarized radio continuum attributable to
influence of the ambient gas. For some galaxies they agree with observations of
other species, but sometimes (NGC 4535) the magnetic field is the only tracer
of the interaction with the cluster environment. The cluster environment
clearly affects the evolution of the galaxies due to ram pressure and tidal
effects. Magnetic fields provide a very long-lasting memory of past
interactions. Therefore, they are a good tracer of weak interactions which are
difficult to detect by other observations.Comment: 13 pages, 12 figure
- …
