5 research outputs found
Fluctuating diamagnetism in underdoped high temperature superconductors
The fluctuation induced diamagnetism of underdoped high temperature
superconductors is studied in the framework of the Lawrence-Doniach model. By
taking into account the fluctuations of the phase of the order parameter only,
the latter reduces to a layered XY-model describing a liquid of vortices which
can be either thermally excited or induced by the external magnetic field. The
diamagnetic response is given by a current-current correlation function which
is evaluated using the Coulomb gas analogy. Our results are then applied to
recent measurements of fluctuation diamagnetism in underdoped YBCO. They allow
to understand both the observed anomalous temperature dependence of the
zero-field susceptibility and the two distinct regimes appearing in the
magnetic field dependence of the magnetization.Comment: 12 pages, 4 figures included, accepted for publication in PR
Phase fluctuations and the pseudogap in YBa2Cu3Ox
The thermodynamics of the superconducting transition is studied as a function
of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals
and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show
that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field
value (Tc-MF) by phase fluctuations of the superconducting order parameter. For
overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We
find that Tc-MF exhibits a similar doping dependence as the pseudogap energy,
naturally suggesting that the pseudogap arises from phase-incoherent Cooper
pairing.Comment: 9 pages, 3 Figure
Correlations Between Charge Ordering and Local Magnetic Fields in Overdoped YBaCuO
Zero-field muon spin relaxation (ZF-SR) measurements were undertaken on
under- and overdoped samples of superconducting YBaCuO to
determine the origin of the weak static magnetism recently reported in this
system. The temperature dependence of the muon spin relaxation rate in
overdoped crystals displays an unusual behavior in the superconducting state. A
comparison to the results of NQR and lattice structure experiments on highly
doped samples provides compelling evidence for strong coupling of charge, spin
and structural inhomogeneities.Comment: 4 pages, 4 figures, new data, new figures and modified tex
Gap structure in the electron-doped Iron-Arsenide Superconductor Ba(Fe0.92Co0.08)2As2: low-temperature specific heat study
We report the field and temperature dependence of the low-temperature
specific heat down to 400 mK and in magnetic fields up to 9 T of the
electron-doped Ba(Fe0.92Co0.08)2As2 superconductor. Using the phonon specific
heat obtained from pure BaFe2As2 we find the normal state Sommerfeld
coefficient to be 18 mJ/mol.K^2 and a condensation energy of 1.27 J/mol. The
temperature dependence of the electronic specific heat clearly indicate the
presence of the low-energy excitations in the system. The magnetic field
variation of field-induced specific heat cannot be described by single clean s-
or d-wave models. Rather, the data require an anisotropic gap scenario which
may or may not have nodes. We discuss the implications of these results.Comment: New Journal of Physics in press, 10 pages, 5 figure
