5 research outputs found

    Fluctuating diamagnetism in underdoped high temperature superconductors

    Full text link
    The fluctuation induced diamagnetism of underdoped high temperature superconductors is studied in the framework of the Lawrence-Doniach model. By taking into account the fluctuations of the phase of the order parameter only, the latter reduces to a layered XY-model describing a liquid of vortices which can be either thermally excited or induced by the external magnetic field. The diamagnetic response is given by a current-current correlation function which is evaluated using the Coulomb gas analogy. Our results are then applied to recent measurements of fluctuation diamagnetism in underdoped YBCO. They allow to understand both the observed anomalous temperature dependence of the zero-field susceptibility and the two distinct regimes appearing in the magnetic field dependence of the magnetization.Comment: 12 pages, 4 figures included, accepted for publication in PR

    Phase fluctuations and the pseudogap in YBa2Cu3Ox

    Full text link
    The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field value (Tc-MF) by phase fluctuations of the superconducting order parameter. For overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We find that Tc-MF exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.Comment: 9 pages, 3 Figure

    Correlations Between Charge Ordering and Local Magnetic Fields in Overdoped YBa2_2Cu3_3O6+x_{6+x}

    Full text link
    Zero-field muon spin relaxation (ZF-μ\muSR) measurements were undertaken on under- and overdoped samples of superconducting YBa2_2Cu3_3O6+x_{6+x} to determine the origin of the weak static magnetism recently reported in this system. The temperature dependence of the muon spin relaxation rate in overdoped crystals displays an unusual behavior in the superconducting state. A comparison to the results of NQR and lattice structure experiments on highly doped samples provides compelling evidence for strong coupling of charge, spin and structural inhomogeneities.Comment: 4 pages, 4 figures, new data, new figures and modified tex

    Gap structure in the electron-doped Iron-Arsenide Superconductor Ba(Fe0.92Co0.08)2As2: low-temperature specific heat study

    Full text link
    We report the field and temperature dependence of the low-temperature specific heat down to 400 mK and in magnetic fields up to 9 T of the electron-doped Ba(Fe0.92Co0.08)2As2 superconductor. Using the phonon specific heat obtained from pure BaFe2As2 we find the normal state Sommerfeld coefficient to be 18 mJ/mol.K^2 and a condensation energy of 1.27 J/mol. The temperature dependence of the electronic specific heat clearly indicate the presence of the low-energy excitations in the system. The magnetic field variation of field-induced specific heat cannot be described by single clean s- or d-wave models. Rather, the data require an anisotropic gap scenario which may or may not have nodes. We discuss the implications of these results.Comment: New Journal of Physics in press, 10 pages, 5 figure
    corecore