1,833 research outputs found
Long-Term Variations in the Growth and Decay Rates of Sunspot Groups
Using the combined Greenwich (1874-1976) and Solar Optical Observatories
Network (1977-2009) data on sunspot groups, we study the long-term variations
in the mean daily rates of growth and decay of sunspot groups. We find that the
minimum and the maximum values of the annually averaged daily mean growth rates
are ~52% per day and ~183% per day, respectively, whereas the corresponding
values of the annually averaged daily mean decay rates are ~21% per day and
~44% per day, respectively. The average value (over the period 1874-2009) of
the growth rate is about 70% more than that of the decay rate. The growth and
the decay rates vary by about 35% and 13%, respectively, on a 60-year
time-scale. From the beginning of Cycle 23 the growth rate is substantially
decreased and near the end (2007-2008) the growth rate is lowest in the past
about 100 years.Comment: 1 table, 13 figures, accepted by Solar Physic
Leptonic Decays of the W-Boson in a Strong Electromagnetic Field
The probability of W-boson decay into a lepton and a neutrino in a strong
electromagnetic field is calculated. On the basis of the method for deriving
exact solutions to relativistic wave equations for charged particles, an exact
analytic expression is obtained for the partial W-decay width at an arbitrary
value of the external field strength. It is found that, in the region of
comparatively weak fields, field-induced corrections to the standard decay
width of the W-boson in a vacuum are about a few percent. In these conditions
at first we observe the decrease of the W-boson partial decay width with the
increase of the external field strength parameter. At absolute minimum the
W-width deviates from the corresponding vacuum value by a factor 0,926. Then
with further augmentation of the background field intensity the W-boson decay
width grows monotonously. In superstrong fields the partial W-width is greater
than the corresponding one in vacuum in a dozen of times.Comment: LaTex file, 19 pages, 2 Postscript figur
Knockout of proton-neutron pairs from O with electromagnetic probes
After recent improvements to the Pavia model of two-nucleon knockout from
O with electromagnetic probes the calculated cross sections are compared
to experimental data from such reactions. Comparison with data from a
measurement of the O(e,epn) reaction show much better agreement
between experiment and theory than was previously observed. In a comparison
with recent data from a measurement of the O(,pn) reaction the
model over-predicts the measured cross section at low missing momentum.Comment: 6 pages, 5 figure
The helicity amplitudes A and A for the D resonance obtained from the reaction}
The helicity dependence of the reaction
has been measured for the first time in the photon energy range from 550 to 790
MeV. The experiment, performed at the Mainz microtron MAMI, used a
4-detector system, a circularly polarized, tagged photon beam, and a
longitudinally polarized frozen-spin target. These data are predominantly
sensitive to the resonance and are used to determine its
parameters.Comment: 5 pages, 4 figure
Search for Short-Term Periodicities in the Sun's Surface Rotation: A Revisit
The power spectral analyses of the Sun's surface equatorial rotation rate
determined from the Mt. Wilson daily Doppler velocity measurements during the
period 3 December 1985 to 5 March 2007 suggests the existence of 7.6 year, 2.8
year, 1.47 year, 245 day, 182 day and 158 day periodicities in the surface
equatorial rotation rate during the period before 1996.
However, there is no variation of any kind in the more accurately measured
data during the period after 1995. That is, the aforementioned periodicities in
the data during the period before the year 1996 may be artifacts of the
uncertainties of those data due to the frequent changes in the instrumentation
of the Mt. Wilson spectrograph. On the other hand, the temporal behavior of
most of the activity phenomena during cycles 22 (1986-1996) and 23 (after 1997)
is considerably different. Therefore, the presence of the aforementioned
short-term periodicities during the last cycle and absence of them in the
current cycle may, in principle, be real temporal behavior of the solar
rotation during these cycles.Comment: 11 pages, 6 figures, accepted for publication in Solar Physic
Measurement of the Matrix Elements for the Decays and
Based on a sample of events collected with the
BESIII detector at the BEPCII collider, Dalitz plot analyses of selected 79,625
events, 33,908
events and 1,888
events are performed. The measured
matrix elements of are in reasonable agreement
with previous measurements. The Dalitz plot slope parameters of
and
are determined to be and , respectively, where the first uncertainties are statistical and the
second systematic. Both values are consistent with previous measurements, while
the precision of the latter one is improved by a factor of three. Final state
interactions are found to have an important role in those decays.Comment: 12 pages, 7 figure
Measurement of the Cross Section between 600 and 900 MeV Using Initial State Radiation
We extract the cross section in the energy
range between 600 and 900 MeV, exploiting the method of initial state
radiation. A data set with an integrated luminosity of 2.93 fb taken at
a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII
collider is used. The cross section is measured with a systematic uncertainty
of 0.9%. We extract the pion form factor as well as the
contribution of the measured cross section to the leading order hadronic vacuum
polarization contribution to . We find this value to be
.Comment: 14 pages, 7 figures, accepted by PL
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
- …
