229 research outputs found
Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions
We propose a decoherence-free subspaces (DFS) scheme to realize scalable
quantum computation with trapped ions. The spin-dependent Coulomb interaction
is exploited, and the universal set of unconventional geometric quantum gates
is achieved in encoded subspaces that are immune from decoherence by collective
dephasing. The scalability of the scheme for the ion array system is
demonstrated, either by an adiabatic way of switching on and off the
interactions, or by a fast gate scheme with comprehensive DFS encoding and
noise decoupling techniques.Comment: 4 pages, 1 figur
Trapped ion chain as a neural network
We demonstrate the possibility of realizing a neural network in a chain of
trapped ions with induced long range interactions. Such models permit to store
information distributed over the whole system. The storage capacity of such
network, which depends on the phonon spectrum of the system, can be controlled
by changing the external trapping potential and/or by applying longitudinal
local magnetic fields. The system properties suggest the possibility of
implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure
Designer Spin Pseudomolecule Implemented with Trapped Ions in a Magnetic Gradient
We report on the experimental investigation of an individual pseudomolecule
using trapped ions with adjustable magnetically induced J-type coupling between
spin states. Resonances of individual spins are well separated and are
addressed with high fidelity. Quantum gates are carried out using microwave
radiation in the presence of thermal excitation of the pseudomolecule's
vibrations. Demonstrating Controlled-NOT gates between non-nearest neighbors
serves as a proof-of-principle of a quantum bus employing a spin chain.
Combining advantageous features of nuclear magnetic resonance experiments and
trapped ions, respectively, opens up a new avenue towards scalable quantum
information processing.Comment: replaced with published version, 6 pages, 4 figure
Dynamic entanglement in oscillating molecules and potential biological implications
We demonstrate that entanglement can persistently recur in an oscillating
two-spin molecule that is coupled to a hot and noisy environment, in which no
static entanglement can survive. The system represents a non-equilibrium
quantum system which, driven through the oscillatory motion, is prevented from
reaching its (separable) thermal equilibrium state. Environmental noise,
together with the driven motion, plays a constructive role by periodically
resetting the system, even though it will destroy entanglement as usual. As a
building block, the present simple mechanism supports the perspective that
entanglement can exist also in systems which are exposed to a hot environment
and to high levels of de-coherence, which we expect e.g. for biological
systems. Our results furthermore suggest that entanglement plays a role in the
heat exchange between molecular machines and environment. Experimental
simulation of our model with trapped ions is within reach of the current
state-of-the-art quantum technologies.Comment: Extended version, including supplementary information. 9 pages, 8
figure
A planar ion trap chip with integrated structures for an adjustable magnetic field gradient
We present the design, fabrication, and characterization of a segmented
surface ion trap with integrated current carrying structures. The latter
produce a spatially varying magnetic field necessary for magnetic gradient
induced coupling between ionic effective spins. We demonstrate trapping of
strings of 172Yb+ ions, characterize the performance of the trap and map
magnetic fields by radio frequency-optical double resonance spectroscopy. In
addition, we apply and characterize the magnetic gradient and demonstrate
individual addressing in a string of three ions using RF radiation.Comment: 9 pages, 14 figures, submitted to Applied Physics B on 21 June 2013.
Version 2: Presentation, wording, and grammar improved. References added /
change
Simultaneous cooling of axial vibrational modes in a linear ion trap
In order to use a collection of trapped ions for experiments where a well-defined preparation of vibrational states is necessary, all vibrational modes have to be cooled to ensure precise and repeatable manipulation of the ions quantum states. A method for simultaneous sideband cooling of all axial vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum of each ion is modified such that sideband resonances of different vibrational modes coincide. The ion string is then irradiated with monochromatic electromagnetic radiation, in the optical or microwave regime, for sideband excitation. This cooling scheme is investigated in detailed numerical studies. Its application for initializing ion strings for quantum information processing is extensively discussed
Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy
In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear 13C and 1H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific 2H and 13C labeling, spin topologies are introduced into DNA and RNA that make 1H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for 1H RD experiments of nucleic acids
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
The {\eta}'-carbon potential at low meson momenta
The production of mesons in coincidence with forward-going
protons has been studied in photon-induced reactions on C and on a
liquid hydrogen (LH) target for incoming photon energies of 1.3-2.6 GeV at
the electron accelerator ELSA. The mesons have been identified
via the decay
registered with the CBELSA/TAPS detector system. Coincident protons have been
identified in the MiniTAPS BaF array at polar angles of . Under these kinematic constraints the
mesons are produced with relatively low kinetic energy (
150 MeV) since the coincident protons take over most of the momentum of the
incident-photon beam. For the C-target this allows the determination of the
real part of the -carbon potential at low meson momenta by
comparing with collision model calculations of the kinetic energy
distribution and excitation function. Fitting the latter data for
mesons going backwards in the center-of-mass system yields a potential depth of
V = (44 16(stat)15(syst)) MeV, consistent with earlier
determinations of the potential depth in inclusive measurements for average
momenta of 1.1 GeV/. Within the experimental
uncertainties, there is no indication of a momentum dependence of the
-carbon potential. The LH data, taken as a reference to check
the data analysis and the model calculations, provide differential and integral
cross sections in good agreement with previous results for
photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with
arXiv:1608.0607
- …
