1,287 research outputs found
Strong interfacial exchange field in the graphene/EuS heterostructure
Exploiting 2D materials for spintronic applications can potentially realize
next-generation devices featuring low-power consumption and quantum operation
capability. The magnetic exchange field (MEF) induced by an adjacent magnetic
insulator enables efficient control of local spin generation and spin
modulation in 2D devices without compromising the delicate material structures.
Using graphene as a prototypical 2D system, we demonstrate that its coupling to
the model magnetic insulator (EuS) produces a substantial MEF (> 14 T) with
potential to reach hundreds of Tesla, which leads to orders-of-magnitude
enhancement in the spin signal originated from Zeeman spin-Hall effect.
Furthermore, the new ferromagnetic ground state of Dirac electrons resulting
from the strong MEF may give rise to quantized spin-polarized edge transport.
The MEF effect shown in our graphene/EuS devices therefore provides a key
functionality for future spin logic and memory devices based on emerging 2D
materials in classical and quantum information processing
Mott Transition in An Anyon Gas
We introduce and analyze a lattice model of anyons in a periodic potential
and an external magnetic field which exhibits a transition from a Mott
insulator to a quantum Hall fluid. The transition is characterized by the anyon
statistics, , which can vary between Fermions, , and Bosons,
. For bosons the transition is in the universality class of the
classical three-dimensional XY model. Near the Fermion limit, the transition is
described by a massless Dirac theory coupled to a Chern-Simons gauge
field. Analytic calculations perturbative in , and also a large
N-expansion, show that due to gauge fluctuations, the critical properties of
the transition are dependent on the anyon statistics. Comparison with previous
calcualations at and near the Boson limit, strongly suggest that our lattice
model exhibits a fixed line of critical points, with universal critical
properties which vary continuosly and monotonically as one passes from Fermions
to Bosons. Possible relevance to experiments on the transitions between
plateaus in the fractional quantum Hall effect and the magnetic field-tuned
superconductor-insulator transition are briefly discussed.Comment: text and figures in Latex, 41 pages, UBCTP-92-28, CTP\#215
Velocity-force characteristics of an interface driven through a periodic potential
We study the creep dynamics of a two-dimensional interface driven through a
periodic potential using dynamical renormalization group methods. We find that
the nature of weak-drive transport depends qualitatively on whether the
temperature is above or below the equilibrium roughening transition
temperature . Above , the velocity-force characteristics is Ohmic,
with linear mobility exhibiting a jump discontinuity across the transition. For
, the transport is highly nonlinear, exhibiting an interesting
crossover in temperature and weak external force . For intermediate drive,
, we find near a power-law velocity-force characteristics
, with , and well-below ,
, with . In the limit
of vanishing drive () the velocity-force characteristics crosses over
to , and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.
Non-zero temperature transport near quantum critical points
We describe the nature of charge transport at non-zero temperatures ()
above the two-dimensional () superfluid-insulator quantum critical point. We
argue that the transport is characterized by inelastic collisions among
thermally excited carriers at a rate of order . This implies that
the transport at frequencies is in the hydrodynamic,
collision-dominated (or `incoherent') regime, while is
the collisionless (or `phase-coherent') regime. The conductivity is argued to
be times a non-trivial universal scaling function of , and not independent of , as has been previously
claimed, or implicitly assumed. The experimentally measured d.c. conductivity
is the hydrodynamic limit of this function, and is a
universal number times , even though the transport is incoherent.
Previous work determined the conductivity by incorrectly assuming it was also
equal to the collisionless limit of the scaling
function, which actually describes phase-coherent transport with a conductivity
given by a different universal number times . We provide the first
computation of the universal d.c. conductivity in a disorder-free boson model,
along with explicit crossover functions, using a quantum Boltzmann equation and
an expansion in . The case of spin transport near quantum
critical points in antiferromagnets is also discussed. Similar ideas should
apply to the transitions in quantum Hall systems and to metal-insulator
transitions. We suggest experimental tests of our picture and speculate on a
new route to self-duality at two-dimensional quantum critical points.Comment: Feedback incorporated into numerous clarifying remarks; additional
appendix discusses relationship to transport in dissipative quantum mechanics
and quantum Hall edge state tunnelling problems, stimulated by discussions
with E. Fradki
Unsteady Unidirectional MHD Flow of Voigt Fluids Moving between Two Parallel Surfaces for Variable Volume Flow Rates
The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are considered in this study including 1 constant acceleration piston motion, 2 suddenly started flow, 3 linear acceleration piston motion, and 4 oscillatory piston motion. The solution for each case is elaborately derived, and the results of associated velocity profile and pressure gradients are presented in analytical forms
Investigating the dynamics of surface-immobilized DNA nanomachines
Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors
The role of adult tissue-derived stem cells in chronic leg ulcers: A systematic review focused on tissue regeneration medicine
Self-Assembly of 9,10-Bis(phenylethynyl) anthracene (BPEA) Derivatives: Influence of pi-pi and Hydrogen Bonding Interactions on Aggregate Morphology and Self-Assembly Mechanism
9,10-Bis(phenylethynyl)anthracenes (BPEAs) are an important class of dyes with various applications including chemiluminescence emitters, materials for photon upconversion and for optoelectronic devices. Some of these applications require control over the packing modes of the active molecules within the active layer, which can be effected by bottom-up self-assembly. Studies aimed at controlling the molecular organization of BPEAs have primarily focused on bulk or liquid crystal materials, while in-depth investigations of BPEA-based assemblies in solution remain elusive. In this article, we report the self-assembly of two new BPEA derivatives with hydrophobic side chains, one of them featuring amide functional groups (2) and the other one lacking them (1). Comparison of the self-assembly behaviour in solution of both systems via spectroscopic (UV/Vis, fluorescence and NMR), microscopic (AFM) and theoretical (PM6) studies reveals the crucial role of the amide groups in controlling the self-assembly. While for both systems the formation of H-type face-to-face -stacks is proposed, the interplay of -stacking and H-bonding is responsible of driving the formation of 1D stacks and increasing the binding constant two-to-three orders of magnitude. Our findings show that H-bonding is a prerequisite to create ordered BPEA assemblies in solution
Graphene-Based Nanocomposites for Energy Storage
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
- …
