178 research outputs found

    Stochastic motion planning and applications to traffic

    Get PDF
    This paper presents a stochastic motion planning algorithm and its application to traffic navigation. The algorithm copes with the uncertainty of road traffic conditions by stochastic modeling of travel delay on road networks. The algorithm determines paths between two points that optimize a cost function of the delay probability distribution. It can be used to find paths that maximize the probability of reaching a destination within a particular travel deadline. For such problems, standard shortest-path algorithms don’t work because the optimal substructure property doesn’t hold. We evaluate our algorithm using both simulations and real-world drives, using delay data gathered from a set of taxis equipped with GPS sensors and a wireless network. Our algorithm can be integrated into on-board navigation systems as well as route-finding Web sites, providing drivers with good paths that meet their desired goals.National Science Foundation (U.S.) (grant EFRI-0710252)National Science Foundation (U.S.) (grant IIS-0426838

    Finding least fuel emission paths in a network with time-varying speeds

    Get PDF
    This article considers the problem of finding a route and schedule for a vehicle starting from a depot, visiting a set of customers, and returning to the depot, in a time-dependent network where the objective is to minimize the greenhouse gas emissions. In this formulation, the speeds of the vehicle as well as the routes chosen are decision variables subject to limits determined by the level of congestion on the roads at the time. Two methods are proposed to find the optimal strategy for a single route. One is a time-increment-based dynamic programming method, and the other is a new heuristic approach. In addition, a case study is carried out, which compares the performances of these methods, as well as the least polluting routes with the shortest time routes between two customer nodes
    corecore