1,816 research outputs found
Academia–Pharma Intersect: Providing a Broader Perspective on Drug Development Synergies between Academia and Industry
The Effect of Self-Assembling Peptide RADA16-I on the Growth of Human Leukemia Cells in Vitro and in Nude Mice
Nanofiber scaffolds formed by self-assembling peptide RADA16-I have been used for the study of cell proliferation to mimic an extracellular matrix. In this study, we investigated the effect of RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Self-assembly assessment showed that RADA16-I molecules have excellent self-assembling ability to form stable nanofibers. MTT assay displayed that RADA16-I has no cytotoxicity for leukemia cells and human umbilical vein endothelial cells (HUVECs) in vitro. However, RADA16-I inhibited the growth of K562 tumors in nude mice. Furthermore, we found RADA16-I inhibited vascular tube-formation by HUVECs in vitro. Our data suggested that nanofiber scaffolds formed by RADA16-I could change tumor microenvironments, and inhibit the growth of tumors. The study helps to encourage further design of self-assembling systems for cancer therapy.China. Ministry of Education (project 985
Altering DNA Base Excision Repair: Use of Nuclear and Mitochondrial-Targeted N-Methylpurine DNA Glycosylase to Sensitize Astroglia to Chemotherapeutic Agents
Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DNA integrity. An adenoviral expression system was employed to target high levels of the BER pathway initiator, N-methylpurine glycosylase (MPG), to either the mitochondria or nucleus of primary astrocytes to test the hypothesis that an alteration in BER results in increased alkylation sensitivity. Increasing MPG activity significantly increased BER kinetics in both the mitochondria and nuclei. Although modulating MPG activity in mitochondria appeared to have little effect on alkylation sensitivity, increased nuclear MPG activity resulted in cell death in astrocyte cultures treated with methylnitrosourea (MNU). Caspase-3 cleavage was not detected, thus indicating that these alkylation sensitive astrocytes do not undergo a typical programmed cell death in response to MNU. Astrocytes were found to express relatively high levels of antiapoptotic Bcl-2 and Bcl-XL and very low levels of proapoptotic Bad and Bid suggesting that the mitochondrial pathway of apoptosis may be blocked making astrocytes less vulnerable to proapoptotic stimuli compared with other cell types. Consequently, this unique characteristic of astrocytes may be responsible, in part, for resistance of astrocytomas to chemotherapeutic agents
An exploratory study to identify risk factors for the development of capecitabine-induced palmar plantar erythrodysesthesia (PPE)
Aims: to identify pre-treatment risk factors for the development of Palmar Plantar Erythrodysesthesia in participants receiving capecitabine monotherapy.
Specifically the hypothesis that avoidance of activities that cause friction and pressure cause Palmar Plantar Erythrodysesthesia was tested.
Background. Previous literature showed contradictory evidence on the subject of predictors of chemotherapy-induced Palmar Plantar Erythrodysesthesia. There is a lack of empirical evidence to support the theory that Palmar Plantar Erythrodysesthesia is caused by damage to the microcapillaries due to everyday activities that cause friction or pressure to the hands or feet.
Design. Prospective epidemiological study of risk factors.
Methods. Prospective data collection. All patients prior to commencing capecitabine monotherapy between 11 June 2009–31 December 2010, were offered recruitment into the study and followed up for six cycles of treatment (n = 174). Data were collected during semi-structured interviews, from participants’ diaries, physical examination of the hands and feet and review of notes. Data relating to activities that cause friction, pressure or heat were collected. Data were analysed using bivariate (chi-square and independent groups Student’s t) tests where each independent variable was analysed against Palmar Plantar Erythrodysesthesia.
Results. The only variables that were associated with an increased risk of Palmar Plantar Erythrodysesthesia were a tendency to have warm hands and pre-existing inflammatory disease.
Conclusions. This study gives no support for the hypothesis that avoidance of activities that cause friction and pressure cause Palmar Plantar Erythrodysesthesia
New Results Will Change the Paradigm for Phase I Trials and Drug Approval
The evidence that, when patients are appropriately selected, convincing benefit can be realized in the earliest of trials, setting the stage for rapid drug approval, is examined
Targeting cancer metabolism: a therapeutic window opens
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.
In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs
Comment in
Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016]
Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016]
Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016]
In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016]
US oncologists call for government regulation to curb drug price rises. [BMJ. 2015
Combination of the anti-CD30-auristatin-E antibody-drug conjugate (SGN-35) with chemotherapy improves antitumour activity in Hodgkin lymphoma
The antibody-drug conjugate (ADC) cAC10-vcMMAE consists of the tubulin inhibitor monomethyl auristatin E (MMAE) conjugated to the chimeric anti-CD30 monoclonal antibody cAC10. This ADC potently interferes with the growth of CD30-positive haematological tumours, including Hodgkin lymphoma (HL) and anaplastic large-cell lymphoma. This study found improved antitumour activity in a preclinical model of HL when SGN-35 was combined with chemotherapeutic regimens such as ABVD (doxorubicin, bleomycin, vinblastine and dacarbazine) or gemcitabine. Improved efficacy was also observed in high tumour burden models, indicating that combining ADCs with chemotherapeutic agents may be advantageous for the treatment of patients with relapsed or refractory HL
Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations
Cancer patients with tumors of similar grading, staging and histogenesis can have markedly different treatment responses to different chemotherapy agents. So far, individual markers have failed to correctly predict resistance against anticancer agents. We tested 30 cancer cell lines for sensitivity to 5-fluorouracil, cisplatin, cyclophosphamide, doxorubicin, etoposide, methotrexate, mitomycin C, mitoxantrone, paclitaxel, topotecan and vinblastine at drug concentrations that can be systemically achieved in patients. The resistance index was determined to designate the cell lines as sensitive or resistant, and then, the subset of resistant vs. sensitive cell lines for each drug was compared. Gene expression signatures for all cell lines were obtained by interrogating Affymetrix U133A arrays. Prediction Analysis of Microarrays was applied for feature selection. An individual prediction profile for the resistance against each chemotherapy agent was constructed, containing 42-297 genes. The overall accuracy of the predictions in a leave-one-out cross validation was 86%. A list of the top 67 multidrug resistance candidate genes that were associated with the resistance against at least 4 anticancer agents was identified. Moreover, the differential expressions of 46 selected genes were also measured by quantitative RT-PCR using a TaqMan micro fluidic card system. As a single gene can be correlated with resistance against several agents, associations with resistance were detected all together for 76 genes and resistance phenotypes, respectively. This study focuses on the resistance at the in vivo concentrations, making future clinical cancer response prediction feasible. The TaqMan-validated gene expression patterns provide new gene candidates for multidrug resistance
- …
