65 research outputs found

    On elliptic problems with a nonlinearity depending on the gradient

    Get PDF
    We investigate the solvability of the Neumann problem (1.1)(1.1) involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side ff of the equation belongs to Lm(Ω)L^m(\Omega ) with 1m<21 \leq m \lt 2

    Multiple solutions for a nonlinear Neumann problem involving

    Get PDF
    We study the nonlinear Neumann problem (1) involving a critical Sobolev exponent and a nonlinearity of lower order. Our main results assert that for every k&#x2208;&#x2115; problem (1) admits at least k pairs of nontrivial solutions provided a parameter &#956;; belongs to some interval (0, &#956;*)

    Sur un systeme non lineaire d'inegalites aux derivees partielles du type parabolique

    Get PDF
    "Rozważa się układ nierówności różniczkowych typu parabolicznego (w sensie J. Szarskiego) postaci (...)" (fragm. streszczenia

    Asymptotic estimates for solutions of the second boundary value problem for parabolic equations

    Get PDF
    Let .Q be an unbounded domain in Rn . We denote the boundary of Q by dQ. We consider the second boundary value problem n n (1 ) | f - = ) U i j ^ ' ^ V x. + X L + c ^ t » x , u in (0, oo ) x Q , ( 2 ) diiigi = 0 f o r (t,x) 6 (0, oo)x ai? , (3) u(0,x) = f i x ) for x e Q , where ¿^(fr x j denotes the inward conormal derivative to ( 0 , < » ) x 3 i P a t the point ( t , x ) (Fragment tekstu)

    On traces of solutions of linear elliptic systems and their application to the Dirichlet problem

    Get PDF

    Elliptic variational problems with indefinite nonlinearities

    No full text
    NO ABSTRAC

    The space C n−1( Qˉ\bar Q )

    No full text

    On a singular nonlinear Neumann problem

    Get PDF
    We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: (i) 2 < p + 1 < 2*(s), (ii) p + 1 = 2*(s) and (iii) 2*(s) < p + 1 ≤ 2*, where 2*(s) = 2(N-s)/N-2, 0 < s < 2, and 2* = 2(N-s)/N-2 denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively
    corecore