65 research outputs found
On elliptic problems with a nonlinearity depending on the gradient
We investigate the solvability of the Neumann problem involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side of the equation belongs to with
Multiple solutions for a nonlinear Neumann problem involving
We study the nonlinear Neumann problem (1) involving a critical Sobolev exponent and a nonlinearity of lower order. Our main results assert that for every k∈ℕ problem (1) admits at least k pairs of nontrivial solutions provided a parameter μ; belongs to some interval (0, μ*)
Sur un systeme non lineaire d'inegalites aux derivees partielles du type parabolique
"Rozważa się układ nierówności różniczkowych typu parabolicznego (w sensie J. Szarskiego) postaci (...)" (fragm. streszczenia
Asymptotic estimates for solutions of the second boundary value problem for parabolic equations
Let .Q be an unbounded domain in Rn . We denote the boundary of Q by dQ. We consider the second boundary value problem
n n
(1 ) | f - = ) U i j ^ ' ^ V x. + X L + c ^ t » x , u
in (0, oo ) x Q ,
( 2 ) diiigi = 0 f o r (t,x) 6 (0, oo)x ai? ,
(3) u(0,x) = f i x ) for x e Q ,
where ¿^(fr x j denotes the inward conormal derivative to ( 0 , < » ) x 3 i P a t the point ( t , x ) (Fragment tekstu)
On traces of solutions of linear elliptic systems and their application to the Dirichlet problem
On a singular nonlinear Neumann problem
We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: (i) 2 < p + 1 < 2*(s), (ii) p + 1 = 2*(s) and (iii) 2*(s) < p + 1 ≤ 2*, where 2*(s) = 2(N-s)/N-2, 0 < s < 2, and 2* = 2(N-s)/N-2 denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively
- …
