50 research outputs found
Chemotherapy-induced nausea and vomiting in daily clinical practice: a community hospital-based study
Background Chemotherapy-induced nausea and vomiting (CINV) are major adverse effects of cancer chemotherapy. This study investigated: (1) the impact of CINV on patients' health-related quality of life (HRQL) in daily clinical practice; (2) the association between patient characteristics and type of antiemetics and CINV; and (3) the role of CINV in physicians' decisions to modify antiemetic treatment. Patients and methods This prospective, multicenter study was conducted in nine general hospitals in the Netherlands. During three consecutive chemotherapy cycles, patients used a diary to record episodes of nausea, vomiting and antiemetic use. For each cycle, these ratings were made 1 day prior to and 7 days after having received chemotherapy. The influence of CINV on patients' HRQL was evaluated with the Functional Living Index-Emesis (FLIE) questionnaire at day 6 of each treatment cycle. (Changes in) antiemetic use were recorded by the treating nurse. Patient inclusion took place between May 2005 and May 2007. Results Two hundred seventy-seven patients were enrolled in the study. Acute and delayed nausea during the first treatment cycle was reported by 39% and 68% of the patients, respectively. The comparable figures for acute and delayed vomiting were 12% and 23%. During the first and subsequent treatment cycle, approximately one-third of the patients indicated that CINV had a substantial impact on their daily lives. Female patients and younger patients reported significantly more CINV than male and older patients. At all treatment cycles, patients receiving treatment with moderately emetogenic chemotherapy, containing anthracycline, reported more acute nausea than patients receiving highly emetogenic chemotherapy. Acute vomiting was associated significantly with change in (i.e., additional) antiemetic treatment. Delayed CINV did not influence antiemetic treatment. Conclusion CINV continues to be a problem that adversely affects the daily lives of patients. CINV is worse in women and in younger patients. In daily clinical practice, acute CINV, but not delayed CINV, results in changes in antiemetic treatment. In view of the effects of not only acute, but also delayed CINV on daily life, more attention should be paid to adjustment of antiemetic treatment to cover CINV complaints, later during the chemotherapy cycle
Combined Treatment of Heterocyclic Analogues and Benznidazole upon Trypanosoma cruzi In Vivo
Chagas disease caused by Trypanosoma cruzi is an important cause of mortality and morbidity in Latin America but no vaccines or safe chemotherapeutic agents are available. Combined therapy is envisioned as an ideal approach since it may enhance efficacy by acting upon different cellular targets, may reduce toxicity and minimize the risk of drug resistance. Therefore, we investigated the activity of benznidazole (Bz) in combination with the diamidine prodrug DB289 and in combination with the arylimidamide DB766 upon T. cruzi infection in vivo. The oral treatment of T.cruzi-infected mice with DB289 and Benznidazole (Bz) alone reduced the number of circulating parasites compared with untreated mice by about 70% and 90%, respectively. However, the combination of these two compounds decreased the parasitemia by 99% and protected against animal mortality by 100%, but without providing a parasitological cure. When Bz (p.o) was combined with DB766 (via ip route), at least a 99.5% decrease in parasitemia levels was observed. DB766+Bz also provided 100% protection against mice mortality while Bz alone provided about 87% protection. This combined therapy also reduced the tissular lesions induced by T. cruzi infection: Bz alone reduced GPT and CK plasma levels by about 12% and 78% compared to untreated mice group, the combination of Bz with DB766 resulted in a reduction of GPT and CK plasma levels of 56% and 91%. Cure assessment through hemocultive and PCR approaches showed that Bz did not provide a parasitological cure, however, DB766 alone or associated with Bz cured ≥13% of surviving animals
Structural and Mutational Analysis of Functional Differentiation between Synaptotagmins-1 and -7
Synaptotagmins are known to mediate diverse forms of Ca2+-triggered exocytosis through their C2 domains, but the principles underlying functional differentiation among them are unclear. Synaptotagmin-1 functions as a Ca2+ sensor in neurotransmitter release at central nervous system synapses, but synaptotagmin-7 does not, and yet both isoforms act as Ca2+ sensors in chromaffin cells. To shed light into this apparent paradox, we have performed rescue experiments in neurons from synaptotagmin-1 knockout mice using a chimera that contains the synaptotagmin-1 sequence with its C2B domain replaced by the synaptotagmin-7 C2B domain (Syt1/7). Rescue was not achieved either with the WT Syt1/7 chimera or with nine mutants where residues that are distinct in synaptotagmin-7 were restored to those present in synaptotagmin-1. To investigate whether these results arise because of unique conformational features of the synaptotagmin-7 C2B domain, we determined its crystal structure at 1.44 Å resolution. The synaptotagmin-7 C2B domain structure is very similar to that of the synaptotagmin-1 C2B domain and contains three Ca2+-binding sites. Two of the Ca2+-binding sites of the synaptotagmin-7 C2B domain are also present in the synaptotagmin-1 C2B domain and have analogous ligands to those determined for the latter by NMR spectroscopy, suggesting that a discrepancy observed in a crystal structure of the synaptotagmin-1 C2B domain arose from crystal contacts. Overall, our results suggest that functional differentiation in synaptotagmins arises in part from subtle sequence changes that yield dramatic functional differences
A Psychometric Analysis of the Revised Child Anxiety and Depression Scale—Parent Version in a Clinical Sample
Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy
Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic Disease
O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place
