320 research outputs found

    Histoire et agronomie : entre ruptures et durée

    Get PDF

    The evolution of photosynthesis in chromist algae through serial endosymbioses

    Get PDF
    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity

    Structural Color in Marine Algae

    Get PDF
    Structural colouration is widespread in the marine environment. Within the large variety of marine organisms, macroalgae represent a diverse group of more than 24,700 species. Some macroalgae have developed complex optical responses using different nanostructures and material compositions. In this review, we describe the mechanisms that are employed to produce structural colour in algae and provide a discussion on the functional relevance by analysing the geographical distribution and ecology in detail. In contrast to what is observed in the animal kingdom, we hypothesise that structural colour in algae predominantly functions for a non-communicative purpose, most likely protection from radiation damage, e.g. by harmful UV light. We suggest that the presence of structural colour in algae is likely influenced by local factors such as radiation intensity and turbidity of the water.Biotechnology and Biological Sciences Research Council (Grant ID: BBSRC David Phillips, 13 BB/K014617/1), European Research Council (Grant ID: ERC-2014-STG H2020 639088), Department of Chemistry, Cambridge (Philip and Patricia Brown Next Generation Fellowship), National Centre of Competence in Research “Bio-Inspired Materials”, Adolphe Merkle Foundatio

    La notion de gam\ue9tophytes diplo\uefdes et le cycle des Fucales

    No full text
    Volume: 1Start Page: 213End Page: 21

    Les physodes des Phéophycées, leur coloration vitale et leur structure

    Full text link

    Une Euglène à sillon prévestibulaire ventral

    Full text link
    corecore