1,149 research outputs found
Recommended from our members
A diabatically-generated potential vorticity structure near the extratropical tropopause in three simulated extratropical cyclones
The structure of near-tropopause potential vorticity (PV) acts as a primary control on the evolution of extratropical cyclones. Diabatic processes such as the latent heating found in ascending moist warm conveyor belts modify PV. A dipole in diabatically-generated PV (hereafter diabatic PV) straddling the extratropical tropopause, with the positive pole above the negative pole, was diagnosed in a recently published analysis of a simulated extratropical cyclone. This PV dipole has the potential to significantly modify the propagation of Rossby waves and the growth of baroclinically-unstable waves. This previous analysis was based on a single case study simulated with 12-km horizontal grid spacing and parameterized convection. Here, the dipole is investigated in three additional cold-season extratropical cyclones simulated in both convection-parameterizing and convection-permitting model configurations. A diabatic PV dipole across the extratropical tropopause is diagnosed in all three cases. The amplitude of the dipole saturates approximately 36 hours from the time diabatic PV is accumulated. The node elevation of the dipole varies between 2-4 PVU in the three cases, and the amplitude of the system-averaged dipole varies between 0.2-0.4 PVU. The amplitude of the negative pole is similar in the convection-parameterizing and convection-permitting simulations. The positive pole, which is generated by long-wave radiative cooling, is weak in the convection-permitting simulations due to the small domain size which limits the accumulation of diabatic tendencies within the interior of the domain. The possible correspondence between the diabatic PV dipole and the extratropical tropopause inversion layer is discussed
Recommended from our members
A case study of sea breeze blocking regulated by sea surface temperature along the English south coast
The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land–sea temperature contrast and hence a stronger onshore wind – an effect which alone would discourage blocking – the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed
Recommended from our members
Systematic model forecast error in Rossby wave structure
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes
Recommended from our members
Stratosphere-troposphere transport in a numerical simulation of midlatitude convection
The transport of stratospheric air deep into the troposphere via convection is
investigated numerically using the UK Met Office Unified Model. A convective system
that formed on 27 June 2004 near southeast England, in the vicinity an upper level
potential vorticity anomaly and a lowered tropopause, provides the basis for analysis.
Transport is diagnosed using a stratospheric tracer that can either be passed through or
withheld from the model’s convective parameterization scheme. Three simulations are
performed at increasingly finer resolutions, with horizontal grid lengths of 12, 4, and 1 km.
In the 12 and 4 km simulations, tracer is transported deeply into the troposphere by the
parameterized convection. In the 1 km simulation, for which the convective
parameterization is disengaged, deep transport is still accomplished but with a much
smaller magnitude. However, the 1 km simulation resolves stirring along the tropopause
that does not exist in the coarser simulations. In all three simulations, the concentration of
the deeply transported tracer is small, three orders of magnitude less than that of the
shallow transport near the tropopause, most likely because of the efficient dilution of
parcels in the lower troposphere
Cost of porcine reproductive and respiratory syndrome virus at individual farm level – An economic disease model
Porcine reproductive and respiratory syndrome (PRRS) is reported to be among the diseases with the highest economic impact in modern pig production worldwide. Yet, the economic impact of the disease at farm level is not well understood as, especially in endemically infected pig herds, losses are often not obvious. It is therefore difficult for farmers and veterinarians to appraise whether control measures such as virus elimination or vaccination will be economically beneficial for their farm. Thus, aim of this study was to develop an epidemiological and economic model to determine the costs of PRRS for an individual pig farm. In a production model that simulates farm outputs, depending on farm type, farrowing rhythm or length of suckling period, an epidemiological model was integrated. In this, the impact of PRRS infection on health and productivity was estimated. Financial losses were calculated in a gross margin analysis and a partial budget analysis based on the changes in health and production parameters assumed for different PRRS disease severities. Data on the effects of endemic infection on reproductive performance, morbidity and mortality, daily weight gain, feed efficiency and treatment costs were obtained from literature and expert opinion. Nine different disease scenarios were calculated, in which a farrow-to-finish farm (1000 sows) was slightly, moderately or severely affected by PRRS, based on changes in health and production parameters, and either in breeding, in nursery and fattening or in all three stages together. Annual losses ranged from a median of € 75′724 (90% confidence interval (C.I.): € 78′885–€ 122′946), if the farm was slightly affected in nursery and fattening, to a median of € 650′090 (90% C.I. € 603′585–€ 698′379), if the farm was severely affected in all stages. Overall losses were slightly higher if breeding was affected than if nursery and fattening were affected. In a herd moderately affected in all stages, median losses in breeding were € 46′021 and € 422′387 in fattening, whereas costs were € 25′435 lower in nursery, compared with a PRRSV-negative farm. The model is a valuable decision-support tool for farmers and veterinarians if a farm is proven to be affected by PRRS (confirmed by laboratory diagnosis). The output can help to understand the need for interventions in case of significant impact on the profitability of their enterprise. The model can support veterinarians in their communication to farmers in cases where costly disease control measures are justified
Two-neutron transfer reaction mechanisms in C(He,He)C using a realistic three-body He model
The reaction mechanisms of the two-neutron transfer reaction
C(He,He) have been studied at 30 MeV at the TRIUMF ISAC-II
facility using the SHARC charged-particle detector array. Optical potential
parameters have been extracted from the analysis of the elastic scattering
angular distribution. The new potential has been applied to the study of the
transfer angular distribution to the 2 8.32 MeV state in C, using
a realistic 3-body He model and advanced shell model calculations for the
carbon structure, allowing to calculate the relative contributions of the
simultaneous and sequential two-neutron transfer. The reaction model provides a
good description of the 30 MeV data set and shows that the simultaneous process
is the dominant transfer mechanism. Sensitivity tests of optical potential
parameters show that the final results can be considerably affected by the
choice of optical potentials. A reanalysis of data measured previously at 18
MeV however, is not as well described by the same reaction model, suggesting
that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure
Parents just don't understand: Parent-offspring conflict over mate choice
Previous research reveals that children and parents are not in complete agreement over which traits are most important for the mate of the child. Children tend to prefer traits that suggest genetic quality, whereas parents prefer characteristics that suggest high parental investment and cooperation with the ingroup. Using a sample of parents, mothers (n = 234) and fathers (n =240) the hypothesis was supported; parents perceived characteristics indicating a lack of genetic quality as being more unacceptable to the child, while characteristics indicating a lack of parental investment and cooperation with the ingroup were more unacceptable to themselves. Sex differences between mothers and fathers and sons and daughters were explored
Amorphous alumina in the extended atmosphere of Alpha Orionis
In this paper we study the extended atmosphere of the late-type supergiant
Alpha Orionis. Infrared spectroscopy of red supergiants reveals strong
molecular bands, some of which do not originate in the photosphere but in a
cooler layer of molecular material above it. Lately, these layers have been
spatially resolved by near and mid-IR interferometry. In this paper, we try to
reconcile the IR interferometric and ISO-SWS spectroscopic results on Alpha
Orionis with a thorough modelling of the photosphere, molecular layer(s) and
dust shell. From the ISO and near-IR interferometric observations, we find that
Alpha Orionis has only a very low density water layer close above the
photosphere. However, mid-IR interferometric observations and a narrow-slit
N-band spectrum suggest much larger extra-photospheric opacity close to the
photosphere at those wavelengths, even when taking into account the detached
dust shell. We argue that this cannot be due to the water layer, and that
another source of mid-IR opacity must be present. We show that this opacity
source is probably neither molecular nor chromospheric. Rather, we present
amorphous alumina (Al2O3) as the best candidate and discuss this hypothesis in
the framework of dust-condensation scenarios.Comment: 15 pages, 18 figures, accepted for publication in A&
- …
