310 research outputs found
First person – Agathe Chaigne
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Agathe Chaigne is first author on ‘ Three-dimensional geometry controls division symmetry in stem cell colonies’, published in JCS. Agathe is a postdoc in the lab of Ewa Paluch at the MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London, UK, investigating the crosstalk between cell division and cell fate transitions during development
Intuitive control of rolling sound synthesis
International audienceThis paper presents a rolling sound synthesis model which can be intuitively controlled. To propose this model, different aspects of the rolling phenomenon are explored : physical modeling, perceptual attributes and signal morphology. A source-filter model for rolling sounds synthesis is presented with associated intuitive controls
ALADIN is Required for the Production of Fertile Mouse Oocytes
Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions
Importance of the difference in surface pressures of the cell membrane in doxorubicin resistant cells that do not express Pgp and ABCG2
P-glycoprotein (Pgp) represents the archetypal mechanism of drug resistance. But Pgp alone cannot expel drugs. A small but growing body of works has demonstrated that the membrane biophysical properties are central to Pgp-mediated drug resistance. For example, a change in the membrane surface pressure is expected to support drug–Pgp interaction. An interesting aspect from these models is that under specific conditions, the membrane is predicted to take over Pgp concerning the mechanism of drug resistance especially when the surface pressure is high enough, at which point drugs remain physically blocked at the membrane level. However it remains to be determined experimentally whether the membrane itself could, on its own, affect drug entry into cells that have been selected by a low concentration of drug and that do not express transporters. We demonstrate here that in the case of the drug doxorubicin, alteration of the surface pressure of membrane leaflets drive drug resistance
Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency
In this study, we describe four patients from two unrelated families of different ethnicities with a primary immunodeficiency, predominantly manifesting as susceptibility to Epstein-Barr virus (EBV)–related diseases. Three patients presented with EBV-associated Hodgkin’s lymphoma and hypogammaglobulinemia; one also had severe varicella infection. The fourth had viral encephalitis during infancy. Homozygous frameshift or in-frame deletions in CD70 in these patients abolished either CD70 surface expression or binding to its cognate receptor CD27. Blood lymphocyte numbers were normal, but the proportions of memory B cells and EBV-specific effector memory CD8+ T cells were reduced. Furthermore, although T cell proliferation was normal, in vitro–generated EBV-specific cytotoxic T cell activity was reduced because of CD70 deficiency. This reflected impaired activation by, rather than effects during killing of, EBV-transformed B cells. Notably, expression of 2B4 and NKG2D, receptors implicated in controlling EBV infection, on memory CD8+ T cells from CD70-deficient individuals was reduced, consistent with their impaired killing of EBV-infected cells. Thus, autosomal recessive CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of inherited CD27 deficiency. Overall, human CD70–CD27 interactions therefore play a nonredundant role in T and B cell–mediated immunity, especially for protection against EBV and humoral immunity
A digital waveguide-based approach for Clavinet modeling and synthesis
The Clavinet is an electromechanical musical instrument produced in the mid-twentieth century. As is the case for other vintage instruments, it is subject to aging and requires great effort to be maintained or restored. This paper reports analyses conducted on a Hohner Clavinet D6 and proposes a computational model to faithfully reproduce the Clavinet sound in real time, from tone generation to the emulation of the electronic components. The string excitation signal model is physically inspired and represents a cheap solution in terms of both computational resources and especially memory requirements (compared, e.g., to sample playback systems). Pickups and amplifier models have been implemented which enhance the natural character of the sound with respect to previous work. A model has been implemented on a real-time software platform, Pure Data, capable of a 10-voice polyphony with low latency on an embedded device. Finally, subjective listening tests conducted using the current model are compared to previous tests showing slightly improved results
Artificially decreasing cortical tension generates aneuploidy in mouse oocytes
Human and mouse oocytes’ developmental potential can be predicted by their mechanical
properties. Their development into blastocysts requires a specific stiffness window. In this
study, we combine live-cell and computational imaging, laser ablation, and biophysical
measurements to investigate how deregulation of cortex tension in the oocyte contributes to
early developmental failure. We focus on extra-soft cells, the most common defect in a
natural population. Using two independent tools to artificially decrease cortical tension, we
show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal
spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic
increase in myosin-II activity that could sterically hinder chromosome capture. We describe
here an original mode of generation of aneuploidies that could be very common in oocytes
and could contribute to the high aneuploidy rate observed during female meiosis, a leading
cause of infertility and congenital disorders
Observation of wave turbulence in vibrating plates
The nonlinear interaction of waves in a driven medium may lead to wave
turbulence, a state such that energy is transferred from large to small
lengthscales. Here, wave turbulence is observed in experiments on a vibrating
plate. The frequency power spectra of the normal velocity of the plate may be
rescaled on a single curve, with power-law behaviors that are incompatible with
the weak turbulence theory of D{\"u}ring et al. [Phys. Rev. Lett. 97, 025503
(2006)]. Alternative scenarios are suggested to account for this discrepancy --
in particular the occurrence of wave breaking at high frequencies. Finally, the
statistics of velocity increments do not display an intermittent behavior
Finite Element Modeling of Airflow During Phonation
International audienceIn the paper a mathematical model of airflow in human vocal folds is presented. The geometry of the glottal channel is based on measurements of excised human larynges. The airflow is modeled by nonstationary incompressible Navier-Stokes equations in a 2D computational domain, which is deformed in time due to vocal fold vibration. The paper presents numerical results and focuses on flow separation in glottis. Quantitative data from numerical simulations are compared to results of measurements by Particle Image Velocimetry (PIV), performed on a scaled self-oscillating physical model of vocal folds
- …
