798 research outputs found

    CFD investigation of airflow on a model radio control race car

    Get PDF
    The modern day design of vehicles, especially in the racing industry involve a great deal of air flow study. This study shows that drag force adversely affects the forward motion of the car and that there is a difference in the pressure between the air flowing above and below the car. This produces forces along the vertical axis. Aerodynamic forces acting on a car greatly reduces its efficiency. If the car is redesigned to optimise these forces it could produce better results. This paper discusses various techniques that have been used to redesign and optimise the aerodynamics of a model radio control race car

    Disorder effects in electronic structure of substituted transition metal compounds

    Get PDF
    Investigating LaNi(1-x)M(x)O3 (M = Mn and Fe), we identify a characteristic evolution of the spectral function with increasing disorder in presence of strong interaction effects across the metal-insulator transition. We discuss these results vis-a-vis existing theories of electronic structure in simultaneous presence of disorder and interaction.Comment: Revtex, 4 pages, 3 postscript figures (To appear in Phys. Rev. Lett

    Temperature-dependent soft x-ray photoemission and absorption studies of charge disproportionation in La1x_{1-x}Srx_xFeO3_3

    Full text link
    We have measured the temperature dependence of the photoemission and x-ray absorption spectra of La1x_{1-x}Srx_xFeO3_3 (LSFO) epitaxial thin films with x=0.67x=0.67, where charge disproportionation (3Fe3.67+2Fe3++Fe5+3{Fe}^{3.67+}\to 2{Fe}^{3+}+ {Fe}^{5+}) resulting in long-range spin and charge ordering is known to occur below TCD=190T_{CD}=190 K. With decreasing temperature we observed gradual changes of the spectra with spectral weight transfer over a wide energy range of 5\sim 5 eV. Above TCDT_{CD} the intensity at the Fermi level (EFE_F) was relatively high compared to that below TCDT_{CD} but still much lower than that in conventional metals. We also found a similar temperature dependence for x=0.4x=0.4, and to a lesser extent for x=0.2x=0.2. These observations suggest that a local charge disproportionation occurs not only in the x=0.67x=0.67 sample below TCDT_{CD} but also over a wider temperature and composition range in LSFO. This implies that the tendency toward charge disproportionation may be the origin of the unusually wide insulating region of the LSFO phase diagram.Comment: 6 pages, 8 figure

    Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity

    Full text link
    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe0.6_{0.6}Se0.4_{0.4}(TcT_c = 14.5 K \sim 1.2 meV) in an accessible range below and above the Fermi level(EFE_F) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (\sim 8 K) above EFE_F at the Γ\Gamma-point, which shows a sharp superconducting coherence peak with gap formation below TcT_c. The estimated superconducting gap Δ\Delta and Fermi energy ϵF\epsilon_F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.Comment: 26 pages, 16 figures, to be published in Scientific Report

    Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films

    Full text link
    Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy dependent soft x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to out-of-plane FSs, which are drastically modified compared to in-plane FSs. From precise reciprocal space maps in successive zones, we obtain the associated real space compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of in-plane and out-of-plane FS mapping for ultrathin films.Comment: 4 pages, 3 figure

    Evidence for mass renormalization in LaNiO$"" sub 3_: an in situ soft x-ray photoemission study of epitaxial films

    Full text link
    We investigate the electronic structure of high-quality single-crystal LaNiO3_3 (LNO) thin films using in situ photoemission spectroscopy (PES). The in situ high-resolution soft x-ray PES measurements on epitaxial thin films reveal the intrinsic electronic structure of LNO. We find a new sharp feature in the PES spectra crossing the Fermi level, which is derived from the correlated Ni 3dd ege_g electrons. This feature shows significant enhancement of spectral weight with decreasing temperature. From a detailed analysis of resistivity data, the enhancement of spectral weight is attributed to increasing electron correlations due to antiferromagnetic fluctuations.Comment: 4 pages, 4 figures. submitted to Phys. Rev.
    corecore