113 research outputs found

    Simpler and Better Algorithms for Minimum-Norm Load Balancing

    Get PDF
    Recently, Chakrabarty and Swamy (STOC 2019) introduced the minimum-norm load-balancing problem on unrelated machines, wherein we are given a set J of jobs that need to be scheduled on a set of m unrelated machines, and a monotone, symmetric norm; We seek an assignment sigma: J -> [m] that minimizes the norm of the resulting load vector load_{sigma} in R_+^m, where load_{sigma}(i) is the load on machine i under the assignment sigma. Besides capturing all l_p norms, symmetric norms also capture other norms of interest including top-l norms, and ordered norms. Chakrabarty and Swamy (STOC 2019) give a (38+epsilon)-approximation algorithm for this problem via a general framework they develop for minimum-norm optimization that proceeds by first carefully reducing this problem (in a series of steps) to a problem called min-max ordered load balancing, and then devising a so-called deterministic oblivious LP-rounding algorithm for ordered load balancing. We give a direct, and simple 4+epsilon-approximation algorithm for the minimum-norm load balancing based on rounding a (near-optimal) solution to a novel convex-programming relaxation for the problem. Whereas the natural convex program encoding minimum-norm load balancing problem has a large non-constant integrality gap, we show that this issue can be remedied by including a key constraint that bounds the "norm of the job-cost vector." Our techniques also yield a (essentially) 4-approximation for: (a) multi-norm load balancing, wherein we are given multiple monotone symmetric norms, and we seek an assignment respecting a given budget for each norm; (b) the best simultaneous approximation factor achievable for all symmetric norms for a given instance

    Welfare Maximization and Truthfulness in Mechanism Design with Ordinal Preferences

    Full text link
    We study mechanism design problems in the {\em ordinal setting} wherein the preferences of agents are described by orderings over outcomes, as opposed to specific numerical values associated with them. This setting is relevant when agents can compare outcomes, but aren't able to evaluate precise utilities for them. Such a situation arises in diverse contexts including voting and matching markets. Our paper addresses two issues that arise in ordinal mechanism design. To design social welfare maximizing mechanisms, one needs to be able to quantitatively measure the welfare of an outcome which is not clear in the ordinal setting. Second, since the impossibility results of Gibbard and Satterthwaite~\cite{Gibbard73,Satterthwaite75} force one to move to randomized mechanisms, one needs a more nuanced notion of truthfulness. We propose {\em rank approximation} as a metric for measuring the quality of an outcome, which allows us to evaluate mechanisms based on worst-case performance, and {\em lex-truthfulness} as a notion of truthfulness for randomized ordinal mechanisms. Lex-truthfulness is stronger than notions studied in the literature, and yet flexible enough to admit a rich class of mechanisms {\em circumventing classical impossibility results}. We demonstrate the usefulness of the above notions by devising lex-truthful mechanisms achieving good rank-approximation factors, both in the general ordinal setting, as well as structured settings such as {\em (one-sided) matching markets}, and its generalizations, {\em matroid} and {\em scheduling} markets.Comment: Some typos correcte

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx:Ax≥b,0≤x≤d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A,b,c,d are nonnegative.) For any k≥2 and ε>0, if P≠NP this ratio cannot be improved to k−1−ε, and under the unique games conjecture this ratio cannot be improved to k−ε. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx:Ax≤b,0≤x≤d} where A has at most k nonzeroes per column, we give a (2k 2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A ij is small compared to b i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per colum

    Better and Simpler Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

    Get PDF
    Given a non-negative real matrix A, the matrix scaling problem is to determine if it is possible to scale the rows and columns so that each row and each column sums to a specified target value for it. The matrix scaling problem arises in many algorithmic applications, perhaps most notably as a preconditioning step in solving linear system of equations. One of the most natural and by now classical approach to matrix scaling is the Sinkhorn-Knopp algorithm (also known as the RAS method) where one alternately scales either all rows or all columns to meet the target values. In addition to being extremely simple and natural, another appeal of this procedure is that it easily lends itself to parallelization. A central question is to understand the rate of convergence of the Sinkhorn-Knopp algorithm. Specifically, given a suitable error metric to measure deviations from target values, and an error bound epsilon, how quickly does the Sinkhorn-Knopp algorithm converge to an error below epsilon? While there are several non-trivial convergence results known about the Sinkhorn-Knopp algorithm, perhaps somewhat surprisingly, even for natural error metrics such as ell_1-error or ell_2-error, this is not entirely understood. In this paper, we present an elementary convergence analysis for the Sinkhorn-Knopp algorithm that improves upon the previous best bound. In a nutshell, our approach is to show (i) a simple bound on the number of iterations needed so that the KL-divergence between the current row-sums and the target row-sums drops below a specified threshold delta, and (ii) then show that for a suitable choice of delta, whenever KL-divergence is below delta, then the ell_1-error or the ell_2-error is below epsilon. The well-known Pinsker\u27s inequality immediately allows us to translate a bound on the KL divergence to a bound on ell_1-error. To bound the ell_2-error in terms of the KL-divergence, we establish a new inequality, referred to as (KL vs ell_1/ell_2) inequality in the paper. This new inequality is a strengthening of the Pinsker\u27s inequality that we believe is of independent interest. Our analysis of ell_2-error significantly improves upon the best previous convergence bound for ell_2-error. The idea of studying Sinkhorn-Knopp convergence via KL-divergence is not new and has indeed been previously explored. Our contribution is an elementary, self-contained presentation of this approach and an interesting new inequality that yields a significantly stronger convergence guarantee for the extensively studied ell_2-error

    Integrality Gap of the Hypergraphic Relaxation of Steiner Trees: a short proof of a 1.55 upper bound

    Full text link
    Recently Byrka, Grandoni, Rothvoss and Sanita (at STOC 2010) gave a 1.39-approximation for the Steiner tree problem, using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by 1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their techniques to a randomized loss-contracting algorithm

    The Non-Uniform k-Center Problem

    Get PDF
    In this paper, we introduce and study the Non-Uniform k-Center problem (NUkC). Given a finite metric space (X,d)(X,d) and a collection of balls of radii {r1rk}\{r_1\geq \cdots \ge r_k\}, the NUkC problem is to find a placement of their centers on the metric space and find the minimum dilation α\alpha, such that the union of balls of radius αri\alpha\cdot r_i around the iith center covers all the points in XX. This problem naturally arises as a min-max vehicle routing problem with fleets of different speeds. The NUkC problem generalizes the classic kk-center problem when all the kk radii are the same (which can be assumed to be 11 after scaling). It also generalizes the kk-center with outliers (kCwO) problem when there are kk balls of radius 11 and \ell balls of radius 00. There are 22-approximation and 33-approximation algorithms known for these problems respectively; the former is best possible unless P=NP and the latter remains unimproved for 15 years. We first observe that no O(1)O(1)-approximation is to the optimal dilation is possible unless P=NP, implying that the NUkC problem is more non-trivial than the above two problems. Our main algorithmic result is an (O(1),O(1))(O(1),O(1))-bi-criteria approximation result: we give an O(1)O(1)-approximation to the optimal dilation, however, we may open Θ(1)\Theta(1) centers of each radii. Our techniques also allow us to prove a simple (uni-criteria), optimal 22-approximation to the kCwO problem improving upon the long-standing 33-factor. Our main technical contribution is a connection between the NUkC problem and the so-called firefighter problems on trees which have been studied recently in the TCS community.Comment: Adjusted the figur

    On Column-restricted and Priority Covering Integer Programs

    Full text link
    In a column-restricted covering integer program (CCIP), all the non-zero entries of any column of the constraint matrix are equal. Such programs capture capacitated versions of covering problems. In this paper, we study the approximability of CCIPs, in particular, their relation to the integrality gaps of the underlying 0,1-CIP. If the underlying 0,1-CIP has an integrality gap O(gamma), and assuming that the integrality gap of the priority version of the 0,1-CIP is O(omega), we give a factor O(gamma + omega) approximation algorithm for the CCIP. Priority versions of 0,1-CIPs (PCIPs) naturally capture quality of service type constraints in a covering problem. We investigate priority versions of the line (PLC) and the (rooted) tree cover (PTC) problems. Apart from being natural objects to study, these problems fall in a class of fundamental geometric covering problems. We bound the integrality of certain classes of this PCIP by a constant. Algorithmically, we give a polytime exact algorithm for PLC, show that the PTC problem is APX-hard, and give a factor 2-approximation algorithm for it.Comment: 28 pages, 6 figures, extended abstract to appear in proceedings of IPCO 2010
    corecore