68 research outputs found
Effect of FET geometry on charge ordering of transition metal oxides
We examine the effect of an FET geometry on the charge ordering phase diagram
of transition metal oxides using numerical simulations of a semiclassical model
including long-range Coulomb fields, resulting in nanoscale pattern formation.
We find that the phase diagram is unchanged for insulating layers thicker than
approximately twice the magnetic correlation length. For very thin insulating
layers, the onset of a charge clump phase is shifted to lower values of the
strength of the magnetic dipolar interaction, and intermediate diagonal stripe
and geometric phases can be suppressed. Our results indicate that, for
sufficiently thick insulating layers, charge injection in an FET geometry can
be used to experimentally probe the intrinsic charge ordering phases in these
materials.Comment: 4 pages, 4 postscript figure
Nonlinear screening and percolative transition in a two-dimensional electron liquid
A novel variational method is proposed for calculating the percolation
threshold, the real-space structure, and the thermodynamical compressibility of
a disordered two-dimensional electron liquid. Its high accuracy is verified
against prior numerical results and newly derived exact asymptotics. The
inverse compressibility is shown to have a strongly asymmetric minimum at a
density that is approximately the triple of the percolation threshold. This
implies that the experimentally observed metal-insulator transition takes place
well before the percolation point is reached.Comment: 4 pages, 2 figures. (v2) minor changes (v3) reference added (v4) few
more references adde
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
Quantitative Treatment of Decoherence
We outline different approaches to define and quantify decoherence. We argue
that a measure based on a properly defined norm of deviation of the density
matrix is appropriate for quantifying decoherence in quantum registers. For a
semiconductor double quantum dot qubit, evaluation of this measure is reviewed.
For a general class of decoherence processes, including those occurring in
semiconductor qubits, we argue that this measure is additive: It scales
linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure
Lattice Pseudospin Model for Quantum Hall Bilayers
We present a new theoretical approach to the study of quantum Hall
bilayer that is based on a systematic mapping of the microscopic Hamiltonian to
an anisotropic SU(4) spin model on a lattice. To study the properties of this
model we generalize the Heisenberg model Schwinger boson mean field theory
(SBMFT) of Arovas and Auerbach to spin models with anisotropy. We calculate the
temperature dependence of experimentally observable quantities, including the
spin magnetization, and the differential interlayer capacitance. Our theory
represents a substantial improvement over the conventional Hartree-Fock picture
which neglects quantum and thermal fluctuations, and has advantages over
long-wavelength effective models that fail to capture important microscopic
physics at all realistic layer separations. The formalism we develop can be
generalized to treat quantum Hall bilayers at filling factor .Comment: 26 pages, 10 figures. The final version, to appear in PR
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: a longitudinal study
OBJECTIVES: Lateral geniculate nucleus (LGN) volume is reduced after optic neuritis (ON) in neuromyelitis optica spectrum disorders (NMOSD). We aimed at a longitudinal assessment of LGN volume in NMOSD. METHODS: Twenty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 47.8 ± 14.6 years (y), female: n = 27, history of ON (NMO-ON): n = 17, median time since ON: 3[1.2-12.1]y) and 18 healthy controls (HC; age: 39.3 ± 15.8y; female: n = 13) were included. Median follow-up was 4.1[1.1-4.7]y for patients and 1.7[0.9-3.2]y for HC. LGN volume was measured using a multi-atlas-based approach of automated segmentation on 3 Tesla magnetic resonance images. Retinal optical coherence tomography and probabilistic tractography of the optic radiations (OR) were also performed. RESULTS: At baseline, NMO-ON patients had lower LGN volumes (395.4 ± 48.9 mm(3)) than patients without ON (NMO-NON: 450.7 ± 55.6 mm(3); p = 0.049) and HC (444.5 ± 61.5 mm(3), p = 0.025). LGN volume was associated with retinal neuroaxonal loss and microstructural OR damage. Longitudinally, there was no change in LGN volumes in the absence of ON, neither in all patients (B = -0.6, SE = 1.4, p = 0.670), nor in NMO-ON (B = -0.8, SE = 1.6, p = 0.617) and NMO-NON (B = 1.7, SE = 3.5, p = 0.650). However, in four patients with new ON during follow-up, LGN volume was reduced at last visit (median time since ON: 2.6 [1.8-3.9]y) compared to the measurement before ON (352 ± 52.7 vs. 371.1 ± 55.9 mm(3); t = -3.6, p = 0.036). CONCLUSION: Although LGN volume is reduced after ON in NMOSD, this volume loss is not progressive over longer follow-up or independent of ON. Thus, our findings -at least in this relatively small cohort- do not support occult neurodegeneration of the afferent visual pathway in NMOSD
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa
In MRI scans of patientswith anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknownwhether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlyingAN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlationsrangedfrom-0.10to0.23(allp > 0.05). Thereweresomesigns ofaninverseconcordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [ 0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune systemrelevant genes, in particularDRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain-and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN.Stress-related psychiatric disorders across the life spa
Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases. Stress-related psychiatric disorders across the life spa
- …
